En algèbre linéaire, la diagonale principale d'une matrice carrée est la diagonale qui descend du coin en haut à gauche jusqu'au coin en bas à droite. Par exemple, la matrice carrée d'ordre 3 qui suit a des 1 sur sa diagonale principale : Il s'agit en particulier de la matrice identité d'ordre 3. Ici, la diagonale principale est composée de 1 et on a également 2 diagonales « secondaires » de part et d'autre de la diagonale principale, composées par des 2 et l'autre par des 3. Une matrice qui a tous les coefficients en dehors de la diagonale principale nuls est appelée matrice diagonale. Les coefficients de la diagonale principale de certaines matrices indiquent si elles sont inversibles ou non, ou donnent les valeurs propres: une matrice triangulaire est inversible si et seulement si tous les coefficients de la diagonale principale sont non nuls, une matrice triangulaire a toutes ses valeurs propres sur la diagonale principale. La trace, qui est la somme des coefficients de la diagonale principale, est égale à la somme des valeurs propres.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (24)
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
MATH-111(pi): Linear algebra (flipped classroom)
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications. Cette classe pilote est donné sous forme inversée.
MATH-111(f): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
Afficher plus
Séances de cours associées (141)
Méthode Jacobi: Partie I
Introduit la méthode Jacobi pour résoudre les systèmes linéaires et déterminer la convergence.
Diagonalisation des matrices
Explore la diagonalisation des matrices à l'aide de vecteurs propres et de valeurs propres.
Jaynes-Cummings Hamiltonien : Diagonalisation et oscillations du Rabi
Explore le hamiltonien Jaynes-Cummings, mettant l'accent sur la diagonalisation et les oscillations de Rabi dans l'état du vide.
Afficher plus
Publications associées (21)

Deep Learning Theory Through the Lens of Diagonal Linear Networks

Scott William Pesme

In this PhD manuscript, we explore optimisation phenomena which occur in complex neural networks through the lens of 22-layer diagonal linear networks. This rudimentary architecture, which consists of a two layer feedforward linear network with a diagonal ...
EPFL2024

Preserving the positivity of the deformation gradient determinant in intergrid interpolation by combining RBFs and SVD: Application to cardiac electromechanics

Alfio Quarteroni, Francesco Regazzoni

The accurate, robust and efficient transfer of the deformation gradient tensor between meshes of different resolution is crucial in cardiac electromechanics simulations. This paper presents a novel method that combines rescaled localized Radial Basis Funct ...
Lausanne2023

Testing For The Rank Of A Covariance Operator

Victor Panaretos

How can we discern whether the covariance operator of a stochastic pro-cess is of reduced rank, and if so, what its precise rank is? And how can we do so at a given level of confidence? This question is central to a great deal of methods for functional dat ...
INST MATHEMATICAL STATISTICS-IMS2022
Afficher plus
Concepts associés (7)
Matrice (mathématiques)
thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Matrice identité
En mathématiques, plus précisement en algèbre linéaire, une matrice identité ou matrice unité est une matrice carrée diagonale dont la diagonale principale est remplie de , et dont les autres coefficients valent . Elle peut s'écrire : La matrice identité de taille se note : Il est possible de noter les coefficients de la matrice identité d'ordre avec le delta de Kronecker : avec Les matrices identité sont des matrices unitaires et sont donc inversibles et normales.
Matrice triangulaire
vignette|algèbre linéaire En algèbre linéaire, une matrice triangulaire est une matrice carrée dont tous les coefficients sont nuls d’un côté ou de l’autre de la diagonale principale. C’est en particulier le cas si la matrice est diagonale. Une matrice est triangulaire stricte si elle est triangulaire et que tous ses coefficients diagonaux sont nuls. Dans ce qui suit, on considérera un anneau unitaire R non forcément commutatif, des R-modules à gauche et des R-modules à droite.
Afficher plus
MOOCs associés (9)
Algèbre Linéaire (Partie 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algèbre Linéaire (Partie 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algèbre Linéaire (Partie 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.