In linear algebra, the main diagonal (sometimes principal diagonal, primary diagonal, leading diagonal, major diagonal, or good diagonal) of a matrix is the list of entries where . All off-diagonal elements are zero in a diagonal matrix. The following four matrices have their main diagonals indicated by red ones:
Anti-diagonal matrix
The antidiagonal (sometimes counter diagonal, secondary diagonal, trailing diagonal, minor diagonal, off diagonal, or bad diagonal) of an order square matrix is the collection of entries such that for all . That is, it runs from the top right corner to the bottom left corner.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra.
In linear algebra, the identity matrix of size is the square matrix with ones on the main diagonal and zeros elsewhere. It has unique properties, for example when the identity matrix represents a geometric transformation, the object remains unchanged by the transformation. In other contexts, it is analogous to multiplying by the number 1. The identity matrix is often denoted by , or simply by if the size is immaterial or can be trivially determined by the context.
In mathematics, a triangular matrix is a special kind of square matrix. A square matrix is called if all the entries above the main diagonal are zero. Similarly, a square matrix is called if all the entries below the main diagonal are zero. Because matrix equations with triangular matrices are easier to solve, they are very important in numerical analysis. By the LU decomposition algorithm, an invertible matrix may be written as the product of a lower triangular matrix L and an upper triangular matrix U if and only if all its leading principal minors are non-zero.
The accurate, robust and efficient transfer of the deformation gradient tensor between meshes of different resolution is crucial in cardiac electromechanics simulations. This paper presents a novel method that combines rescaled localized Radial Basis Funct ...
In this PhD manuscript, we explore optimisation phenomena which occur in complex neural networks through the lens of 2-layer diagonal linear networks. This rudimentary architecture, which consists of a two layer feedforward linear network with a diagonal ...
How can we discern whether the covariance operator of a stochastic pro-cess is of reduced rank, and if so, what its precise rank is? And how can we do so at a given level of confidence? This question is central to a great deal of methods for functional dat ...