The pleural cavity, pleural space, or interpleural space is the potential space between the pleurae of the pleural sac that surrounds each lung. A small amount of serous pleural fluid is maintained in the pleural cavity to enable lubrication between the membranes, and also to create a pressure gradient.
The serous membrane that covers the surface of the lung is the visceral pleura and is separated from the outer membrane, the parietal pleura, by just the film of pleural fluid in the pleural cavity. The visceral pleura follows the fissures of the lung and the root of the lung structures. The parietal pleura is attached to the mediastinum, the upper surface of the diaphragm, and to the inside of the ribcage.
In humans, the left and right lungs are completely separated by the mediastinum, and there is no communication between their pleural cavities. Therefore, in cases of a unilateral pneumothorax, the contralateral lung will remain functioning normally unless there is a tension pneumothorax, which may shift the mediastinum and the trachea, kink the great vessels and eventually collapse the contralateral cardiopulmonary circulation.
The visceral pleura receives its blood supply from the parenchymal capillaries of the underlying lung, which have input from both the pulmonary and the bronchial circulation. The parietal pleura receives its blood supply from whatever structures underlying it, which can be branched from the aorta (intercostal, superior phrenic and inferior phrenic arteries), the internal thoracic (pericardiacophrenic, anterior intercostal and musculophrenic branches), or their anastomosis.
The visceral pleurae are innervated by splanchnic nerves from the pulmonary plexus, which also innervates the lungs and bronchi. The parietal pleurae however, like their blood supplies, receive nerve supplies from different sources. The costal pleurae (including the portion that bulges above the thoracic inlet) and the periphery of the diaphragmatic pleurae are innervated by the intercostal nerves from the enclosing rib cage, which branches off from the T1-T12 thoracic spinal cord.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours est une préparation intensive à l'examen d'entrée en 3ème année de Médecine. Les matières enseignées sont la morphologie macroscopique (anatomie) , microscopique (histologie) de la tête, du c
Le but est de connaitre et comprendre le fonctionnement des systèmes cardiovasculaire, urinaire, respiratoire, digestif, ainsi que du métabolisme de base et sa régulation afin de déveloper une réflect
A pleural effusion is accumulation of excessive fluid in the pleural space, the potential space that surrounds each lung. Under normal conditions, pleural fluid is secreted by the parietal pleural capillaries at a rate of 0.6 millilitre per kilogram weight per hour, and is cleared by lymphatic absorption leaving behind only 5–15 millilitres of fluid, which helps to maintain a functional vacuum between the parietal and visceral pleurae.
The mediastinum (from mediastinus;: mediastina) is the central compartment of the thoracic cavity. Surrounded by loose connective tissue, it is an undelineated region that contains a group of structures within the thorax, namely the heart and its vessels, the esophagus, the trachea, the phrenic and cardiac nerves, the thoracic duct, the thymus and the lymph nodes of the central chest. The mediastinum lies within the thorax and is enclosed on the right and left by pleurae.
The thorax (: thoraces or thoraxes) or chest is a part of the anatomy of humans, mammals, and other tetrapod animals located between the neck and the abdomen. In insects, crustaceans, and the extinct trilobites, the thorax is one of the three main divisions of the creature's body, each of which is in turn composed of multiple segments. The human thorax includes the thoracic cavity and the thoracic wall. It contains organs including the heart, lungs, and thymus gland, as well as muscles and various other internal structures.
Defining the ontogeny of tumor-associated macrophages (TAM) is important to develop therapeutic targets for mesothelioma. We identified two distinct macrophage populations in mouse peritoneal and pleural cavities, the monocyte-derived, small peritoneal/ple ...
Mechanics is known to play a fundamental role in many cellular and developmental processes. Beyond active forces and material properties, osmotic pressure is believed to control essential cell and tissue characteristics. However, it remains very challengin ...
Point-of-care ultrasound (POCUS) is an increasingly accessible skill, allowing for the decentralization of its use to nonspecialist healthcare workers to guide routine clinical decision-making. The advent of ultrasound-on-a-chip has transformed the technol ...