Summary
In engineering, redundancy is the intentional duplication of critical components or functions of a system with the goal of increasing reliability of the system, usually in the form of a backup or fail-safe, or to improve actual system performance, such as in the case of GNSS receivers, or multi-threaded computer processing. In many safety-critical systems, such as fly-by-wire and hydraulic systems in aircraft, some parts of the control system may be triplicated, which is formally termed triple modular redundancy (TMR). An error in one component may then be out-voted by the other two. In a triply redundant system, the system has three sub components, all three of which must fail before the system fails. Since each one rarely fails, and the sub components are expected to fail independently, the probability of all three failing is calculated to be extraordinarily small; it is often outweighed by other risk factors, such as human error. Redundancy may also be known by the terms "majority voting systems" or "voting logic". Redundancy sometimes produces less, instead of greater reliability - it creates a more complex system which is prone to various issues, it may lead to human neglect of duty, and may lead to higher production demands which by overstressing the system may make it less safe. In computer science, there are four major forms of redundancy: Hardware redundancy, such as dual modular redundancy and triple modular redundancy Information redundancy, such as error detection and correction methods Time redundancy, performing the same operation multiple times such as multiple executions of a program or multiple copies of data transmitted Software redundancy such as N-version programming A modified form of software redundancy, applied to hardware may be: Distinct functional redundancy, such as both mechanical and hydraulic braking in a car. Applied in the case of software, code written independently and distinctly different but producing the same results for the same inputs.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.