Drive by wire or DbW technology in the automotive industry is the use of electronic or electro-mechanical systems in place of mechanical linkages that control driving functions. The concept is similar to fly-by-wire in the aviation industry. Drive-by-wire may refer to just the propulsion of the vehicle through electronic throttle control, or it may refer to electronic control over propulsion as well as steering and braking, which separately are known as steer by wire and brake by wire, along with electronic control over other vehicle driving functions.
Driver input is traditionally transferred mechanically to the motor and wheels through a steering wheel and steering column, throttle, hydraulic brakes, brake pull handles and so on. In drive-by-wire systems, driver input is processed by an electronic control system which controls the vehicle using electromechanical actuators. The human–machine interface, such as a steering wheel, yoke, accelerator pedal, brake pedal, and so on, may include haptic feedback that simulates the resistance of hydraulic and mechanical pedals and steering, including steering kickback. Components such as the steering column, intermediate shafts, pumps, hoses, belts, coolers, vacuum servos and master cylinders are eliminated from the vehicle. Safety standards for drive-by-wire are specified by the ISO 26262 standard level D.
Dispensing with mechanical linkages has several advantages: it reduces complexity and simplifies assembly; simplifies service and tuning; reduces the force required to engage inputs and allows it to be customized with haptic technology; allows for more interior design freedom in the placement of input mechanisms; allows for automation of driving functions; reduces cabin noise by eliminating the acoustic linkage to the drive systems; and by reducing floor openings it improves the crash behavior of the vehicle. Because driver inputs can be overridden, safety can be improved by providing computer controlled intervention of vehicle controls with systems such as electronic stability control (ESC), adaptive cruise control and lane assist systems.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In engineering, redundancy is the intentional duplication of critical components or functions of a system with the goal of increasing reliability of the system, usually in the form of a backup or fail-safe, or to improve actual system performance, such as in the case of GNSS receivers, or multi-threaded computer processing. In many safety-critical systems, such as fly-by-wire and hydraulic systems in aircraft, some parts of the control system may be triplicated, which is formally termed triple modular redundancy (TMR).
A safety-critical system (SCS) or life-critical system is a system whose failure or malfunction may result in one (or more) of the following outcomes: death or serious injury to people loss or severe damage to equipment/property environmental harm A safety-related system (or sometimes safety-involved system) comprises everything (hardware, software, and human aspects) needed to perform one or more safety functions, in which failure would cause a significant increase in the safety risk for the people or envi
Optimal control problems for constrained linear systems with a linear cost can be posed as multiparametric linear programs (pLPs) and solved explicitly offline. Several algorithms have recently been proposed in the literature that solve these pLPs in a fai ...