A semantic data model (SDM) is a high-level semantics-based database description and structuring formalism (database model) for databases. This database model is designed to capture more of the meaning of an application environment than is possible with contemporary database models. An SDM specification describes a database in terms of the kinds of entities that exist in the application environment, the classifications and groupings of those entities, and the structural interconnections among them. SDM provides a collection of high-level modeling primitives to capture the semantics of an application environment. By accommodating derived information in a database structural specification, SDM allows the same information to be viewed in several ways; this makes it possible to directly accommodate the variety of needs and processing requirements typically present in database applications. The design of the present SDM is based on our experience in using a preliminary version of it. SDM is designed to enhance the effectiveness and usability of database systems. An SDM database description can serve as a formal specification and documentation tool for a database; it can provide a basis for supporting a variety of powerful user interface facilities, it can serve as a conceptual database model in the database design process; and, it can be used as the database model for a new kind of database management system. A semantic data model in software engineering has various meanings: It is a conceptual data model in which semantic information is included. This means that the model describes the meaning of its instances. Such a semantic data model is an abstraction that defines how the stored symbols (the instance data) relate to the real world. It is a conceptual data model that includes the capability to express and exchange information which enables parties to interpret meaning (semantics) from the instances, without the need to know the meta-model. Such semantic models are fact-oriented (as opposed to object-oriented).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (13)
DH-405: Foundations of digital humanities
This course gives an introduction to the fundamental concepts and methods of the Digital Humanities, both from a theoretical and applied point of view. The course introduces the Digital Humanities cir
CS-300: Data-intensive systems
This course covers the data management system design concepts using a hands-on approach.
AR-483: Interactive conceptual design of structural forms
The class exposes students to the geometric design of material efficient architectural structures. The focus is placed on the conceptual exploration of a rich, diverse solution set. Hand-controlled me
Show more
Related lectures (48)
Resource Management in Spark
Explores resource management, fault tolerance, job recovery, and Spark SQL in Spark.
Critical Data Studies: Introduction and Models
Introduces the Critical Data Studies course, covering data models, trust, reproducibility, biases, and ethics.
Document Structure
Explores regulated representation and the creation of coherent fictional spaces through annotations.
Show more
Related publications (80)

A semantic model-based systems engineering approach for assessing the operational performance of metal forming process

Jinzhi Lu, Xiaochen Zheng

Metal Forming is a basic and essential industrial process to provide materials for constructing complex products. To design an efficient metal forming process, the functional requirements and operational performance are two important aspects to be consider ...
Pergamon-Elsevier Science Ltd2024

Match Normalization: Learning-Based Point Cloud Registration for 6D Object Pose Estimation in the Real World

Mathieu Salzmann, Zheng Dang

In this work, we tackle the task of estimating the 6D pose of an object from point cloud data. While recent learning-based approaches have shown remarkable success on synthetic datasets, we have observed them to fail in the presence of real-world data. We ...
Ieee Computer Soc2024

Stochastic Models for Comparison-based Search

Daniyar Chumbalov

In this thesis we study a problem of searching in a space of objects using comparisons. To navigate through the space to the target object tt, we ask a sequence of questions of the form ``which object ii or jj is closer to tt?'' for which we observe no ...
EPFL2023
Show more
Related concepts (5)
Three-schema approach
The three-schema approach, or three-schema concept, in software engineering is an approach to building information systems and systems information management that originated in the 1970s. It proposes three different views in systems development, with conceptual modelling being considered the key to achieving data integration.
Conceptual schema
A conceptual schema or conceptual data model is a high-level description of informational needs underlying the design of a database. It typically includes only the main concepts and the main relationships among them. Typically this is a first-cut model, with insufficient detail to build an actual database. This level describes the structure of the whole database for a group of users. The conceptual model is also known as the data model that can be used to describe the conceptual schema when a database system is implemented.
Data modeling
Data modeling in software engineering is the process of creating a data model for an information system by applying certain formal techniques. It may be applied as part of broader Model-driven engineering (MDD) concept. Data modeling is a process used to define and analyze data requirements needed to support the business processes within the scope of corresponding information systems in organizations. Therefore, the process of data modeling involves professional data modelers working closely with business stakeholders, as well as potential users of the information system.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.