Coherence theories of truth characterize truth as a property of whole systems of propositions that can be ascribed to individual propositions only derivatively according to their coherence with the whole. While modern coherence theorists hold that there are many possible systems to which the determination of truth may be based upon coherence, others, particularly those with strong religious beliefs, hold that the truth only applies to a single absolute system. In general, truth requires a proper fit of elements within the whole system. Very often, though, coherence is taken to imply something more than simple formal coherence. For example, the coherence of the underlying set of concepts is considered to be a critical factor in judging validity for the whole system. In other words, the set of base concepts in a universe of discourse must first be seen to form an intelligible paradigm before many theorists will consider that the coherence theory of truth is applicable. In modern philosophy, the coherence theory of truth was defended by Baruch Spinoza, Immanuel Kant, Johann Gottlieb Fichte, Karl Wilhelm Friedrich Schlegel, Georg Wilhelm Friedrich Hegel and Harold Henry Joachim (who is credited with the definitive formulation of the theory). However, Spinoza and Kant have also been interpreted as defenders of the correspondence theory of truth. In contemporary philosophy, several epistemologists have significantly contributed to and defended the theory, primarily Brand Blanshard (who gave the earliest characterization of the theory in contemporary times) and Nicholas Rescher. According to one view, the coherence theory of truth regards truth as coherence within some specified set of sentences, propositions or beliefs. It is the "theory of knowledge which maintains that truth is a property primarily applicable to any extensive body of consistent propositions, and derivatively applicable to any one proposition in such a system by virtue of its part in the system". Ideas like this are a part of the philosophical perspective known as confirmation holism.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (1)
Concepts associés (2)
Vérité
thumb|Walter Seymour Allward, Veritas, 1920 thumb|Nec mergitur ou La Vérité sortant du puits, toile de Édouard Debat-Ponsan, 1898. La vérité (du latin veritas, « vérité », dérivé de verus, « vrai ») est la correspondance entre une proposition et la réalité à laquelle cette proposition réfère. Cependant cette définition correspondantiste de la vérité n'est pas la seule, il existe de nombreuses définitions du mot et des controverses classiques autour des diverses théories de la vérité.
Proposition (philosophie)
Une proposition est en philosophie ce qui dans un énoncé est susceptible d'être conservé lors d'une traduction et de recevoir une valeur de vérité, c'est-à-dire d'être vrai ou faux. Un exemple courant pour désigner ce qu'est une proposition par rapport à un énoncé ou à une phrase est de comparer les deux énoncés ou phrases suivantes : « Il pleut. » « It's raining. » Ces deux énoncés ou phrases ont la même proposition, à savoir qu'il pleut. Un autre exemple courant dans le domaine est de comparer « La neige est blanche » et « Snow is white ».

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.