In atmospheric, earth, and planetary sciences, a scale height, usually denoted by the capital letter H, is a distance (vertical or radial) over which a physical quantity decreases by a factor of e (the base of natural logarithms, approximately 2.718).
For planetary atmospheres, scale height is the increase in altitude for which the atmospheric pressure decreases by a factor of e. The scale height remains constant for a particular temperature. It can be calculated by
or equivalently
where:
kB = Boltzmann constant =
R = gas constant
T = mean atmospheric temperature in kelvins = 250 K for Earth
m = mean mass of a molecule (units kg)
M = mean mass of one mol of atmospheric particles = 0.029 kg/mol for Earth
g = acceleration due to gravity at the current location (m/s2)
The pressure (force per unit area) at a given altitude is a result of the weight of the overlying atmosphere. If at a height of z the atmosphere has density ρ and pressure P, then moving upwards an infinitesimally small height dz will decrease the pressure by amount dP, equal to the weight of a layer of atmosphere of thickness dz.
Thus:
where g is the acceleration due to gravity. For small dz it is possible to assume g to be constant; the minus sign indicates that as the height increases the pressure decreases. Therefore, using the equation of state for an ideal gas of mean molecular mass M at temperature T, the density can be expressed as
Combining these equations gives
which can then be incorporated with the equation for H given above to give:
which will not change unless the temperature does. Integrating the above and assuming P0 is the pressure at height z = 0 (pressure at sea level) the pressure at height z can be written as:
This translates as the pressure decreasing exponentially with height.
In Earth's atmosphere, the pressure at sea level P0 averages about 1.01e5Pa, the mean molecular mass of dry air is 28.964 u and hence m = 28.964 × 1.660e-27 = 4.808e-26kg. As a function of temperature, the scale height of Earth's atmosphere is therefore H/T = k/mg = (1.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Mars is the fourth planet and the furthest terrestrial planet from the Sun. The reddish color of its surface is due to finely grained iron(III) oxide dust in the soil, giving it the nickname "the Red Planet". Mars's radius is second smallest among the planets in the Solar System at . The Martian dichotomy is visible on the surface: on average, the terrain on Mars's northern hemisphere is flatter and lower than its southern hemisphere. Mars has a thin atmosphere made primarily of carbon dioxide and two irregularly shaped natural satellites: Phobos and Deimos.
Planetary science (or more rarely, planetology) is the scientific study of planets (including Earth), celestial bodies (such as moons, asteroids, comets) and planetary systems (in particular those of the Solar System) and the processes of their formation. It studies objects ranging in size from micrometeoroids to gas giants, aiming to determine their composition, dynamics, formation, interrelations and history.
Earth science or geoscience includes all fields of natural science related to the planet Earth. This is a branch of science dealing with the physical, chemical, and biological complex constitutions and synergistic linkages of Earth's four spheres: the biosphere, hydrosphere, atmosphere, and geosphere (or lithosphere). Earth science can be considered to be a branch of planetary science, but with a much older history. There are reductionist and holistic approaches to Earth sciences.
Two ways for producing a transport barrier through strong shear of the E x B poloidal flow have been investigated using GYSELA gyrokinetic simulations in a flux-driven regime. The first one uses an external poloidal momentum (i.e. vorticity) source that lo ...
Before a droplet can contact a surface during impact, it must first displace the air beneath it. Over a wide range of impact velocities, the droplet first squeezes the air into a thin film, enhancing its resistance to drainage; this slows the progress of t ...
This thesis presents a comprehensive investigation of the interaction between precipitation and wind-induced erosion and deposition of snow on Arctic sea ice. The study uses observations from the 2019-2020 MOSAiC expedition and makes use of the 3D snow cov ...