DISPLAYTITLE:f(R) gravity
() is a type of modified gravity theory which generalizes Einstein's general relativity. () gravity is actually a family of theories, each one defined by a different function, , of the Ricci scalar, . The simplest case is just the function being equal to the scalar; this is general relativity. As a consequence of introducing an arbitrary function, there may be freedom to explain the accelerated expansion and structure formation of the Universe without adding unknown forms of dark energy or dark matter. Some functional forms may be inspired by corrections arising from a quantum theory of gravity. () gravity was first proposed in 1970 by Hans Adolph Buchdahl (although was used rather than for the name of the arbitrary function). It has become an active field of research following work by Starobinsky on cosmic inflation. A wide range of phenomena can be produced from this theory by adopting different functions; however, many functional forms can now be ruled out on observational grounds, or because of pathological theoretical problems.
In () gravity, one seeks to generalize the Lagrangian of the Einstein–Hilbert action:
to
where is the determinant of the metric tensor, and is some function of the Ricci scalar.
There are two ways to track the effect of changing to , i.e., to obtain the theory field equations. The first is to use metric formalism and the second is to use the Palatini formalism. While the two formalisms lead to the same field equations for General Relativity, i.e., when , the field equations may differ when .
In metric () gravity, one arrives at the field equations by varying the action with respect to the metric and not treating the connection independently. For completeness we will now briefly mention the basic steps of the variation of the action. The main steps are the same as in the case of the variation of the Einstein–Hilbert action (see the article for more details) but there are also some important differences.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is the basic introduction to modern cosmology. It introduces students to the main concepts and formalism of cosmology, the observational status of Hot Big Bang theory
and discusses major
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Alternatives to general relativity are physical theories that attempt to describe the phenomenon of gravitation in competition with Einstein's theory of general relativity. There have been many different attempts at constructing an ideal theory of gravity. These attempts can be split into four broad categories based on their scope. In this article, straightforward alternatives to general relativity are discussed, which do not involve quantum mechanics or force unification.
In physical cosmology, structure formation is the formation of galaxies, galaxy clusters and larger structures from small early density fluctuations. The universe, as is now known from observations of the cosmic microwave background radiation, began in a hot, dense, nearly uniform state approximately 13.8 billion years ago. However, looking at the night sky today, structures on all scales can be seen, from stars and planets to galaxies. On even larger scales, galaxy clusters and sheet-like structures of galaxies are separated by enormous voids containing few galaxies.
In theories of quantum gravity, the graviton is the hypothetical quantum of gravity, an elementary particle that mediates the force of gravitational interaction. There is no complete quantum field theory of gravitons due to an outstanding mathematical problem with renormalization in general relativity. In string theory, believed by some to be a consistent theory of quantum gravity, the graviton is a massless state of a fundamental string.
General relativity (GR) exists in different formulations. They are equivalent in pure gravity but generically lead to distinct predictions once matter is included. After a brief overview of various versions of GR, we focus on metric-affine gravity, which a ...
The DES-CMASS sample (DMASS) is designed to optimally combine the weak lensing measurements from the Dark Energy Survey (DES) and redshift-space distortions (RSD) probed by the CMASS galaxy sample from the Baryonic Oscillation Spectroscopic Survey. In this ...
2022
, , , ,
Weak-lensing studies via cosmic voids are a promising probe of modified gravity (MG). The excess surface mass density (ESD) is widely used as a lensing statistic in weak-lensing research. In this paper, we use the ray-tracing method to study the ESD around ...