Summary
DISPLAYTITLE:f(R) gravity () is a type of modified gravity theory which generalizes Einstein's general relativity. () gravity is actually a family of theories, each one defined by a different function, , of the Ricci scalar, . The simplest case is just the function being equal to the scalar; this is general relativity. As a consequence of introducing an arbitrary function, there may be freedom to explain the accelerated expansion and structure formation of the Universe without adding unknown forms of dark energy or dark matter. Some functional forms may be inspired by corrections arising from a quantum theory of gravity. () gravity was first proposed in 1970 by Hans Adolph Buchdahl (although was used rather than for the name of the arbitrary function). It has become an active field of research following work by Starobinsky on cosmic inflation. A wide range of phenomena can be produced from this theory by adopting different functions; however, many functional forms can now be ruled out on observational grounds, or because of pathological theoretical problems. In () gravity, one seeks to generalize the Lagrangian of the Einstein–Hilbert action: to where is the determinant of the metric tensor, and is some function of the Ricci scalar. There are two ways to track the effect of changing to , i.e., to obtain the theory field equations. The first is to use metric formalism and the second is to use the Palatini formalism. While the two formalisms lead to the same field equations for General Relativity, i.e., when , the field equations may differ when . In metric () gravity, one arrives at the field equations by varying the action with respect to the metric and not treating the connection independently. For completeness we will now briefly mention the basic steps of the variation of the action. The main steps are the same as in the case of the variation of the Einstein–Hilbert action (see the article for more details) but there are also some important differences.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.