Summary
The three primary objectives of nuclear reactor safety systems as defined by the U.S. Nuclear Regulatory Commission are to shut down the reactor, maintain it in a shutdown condition and prevent the release of radioactive material. A reactor protection system is designed to immediately terminate the nuclear reaction. By breaking the nuclear chain reaction, the source of heat is eliminated. Other systems can then be used to remove decay heat from the core. All nuclear plants have some form of reactor protection system. Control rods are a series of rods that can be quickly inserted into the reactor core to absorb neutrons and rapidly terminate the nuclear reaction. They are typically composed of actinides, lanthanides, transition metals, and boron, in various alloys with structural backing such as steel. In addition to being neutron absorbent, the alloys used also are required to have at least a low coefficient of thermal expansion so that they do not jam under high temperatures, and they have to be self-lubricating metal on metal, because at the temperatures experienced by nuclear reactor cores oil lubrication would foul too quickly. Boiling water reactors are able to SCRAM the reactor completely with the help of their control rods. In the case of a loss of coolant accident (LOCA), the water-loss of the primary cooling system can be compensated with normal water pumped into the cooling circuit. On the other hand, the standby liquid control (SLC) system (SLCS) consists of a solution containing boric acid, which acts as a neutron poison and rapidly floods the core in case of problems with the stopping of the chain reaction. Pressurized water reactors also can SCRAM the reactor completely with the help of their control rods. PWRs also use boric acid to make fine adjustments to reactor power level, or reactivity, using their Chemical and Volume Control System (CVCS). In the case of LOCA, PWRs have three sources of backup cooling water, high pressure injection (HPI), low pressure injection (LPI), and core flood tanks (CFTs).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
ME-464: Introduction to nuclear engineering
This course is intended to understand the engineering design of nuclear power plants using the basic principles of reactor physics, fluid flow and heat transfer. This course includes the following: Re
PHYS-600: Frederic Joliot/Otto Hahn Summer School on nuclear reactors Physics, fuels and systems
The School's aim is to address the challenges of reactor design and optimal fuel cycles, and to broaden the understanding of theory and experiments. The programme of each School session is defined by
PHYS-443: Physics of nuclear reactors
In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
Show more
Related lectures (34)
Introduction to Nuclear Engineering
Covers various topics in nuclear engineering, including reactor technology, nuclear physics, and safety analysis assumptions.
Introduction to Nuclear Engineering
Explores nuclear engineering topics such as reactor technology, safety principles, and emergency core cooling systems.
Nuclear Reactor Safety Principles
Covers nuclear reactor safety principles, radionuclides, safety barriers, decay heat, criticality experiments, and emergency cooling systems.
Show more
Related publications (50)

Gamma noise to non-invasively monitor nuclear research reactors

Andreas Pautz, Vincent Pierre Lamirand, Oskari Ville Pakari, Pavel Frajtag, Tom Mager

Autonomous nuclear reactor monitoring is a key aspect of the International Atomic Energy Agency’s strategy to ensure nonproliferation treaty compliance. From the rise of small modular reactor technology, decentralized nuclear reactor fleets may strain the ...
2024
Show more
Related concepts (16)
Nuclear reactor coolant
A nuclear reactor coolant is a coolant in a nuclear reactor used to remove heat from the nuclear reactor core and transfer it to electrical generators and the environment. Frequently, a chain of two coolant loops are used because the primary coolant loop takes on short-term radioactivity from the reactor. Almost all currently operating nuclear power plants are light water reactors using ordinary water under high pressure as coolant and neutron moderator.
Reactor pressure vessel
A reactor pressure vessel (RPV) in a nuclear power plant is the pressure vessel containing the nuclear reactor coolant, core shroud, and the reactor core. Russian Soviet era RBMK reactors have each fuel assembly enclosed in an individual 8 cm diameter pipe rather than having a pressure vessel. Whilst most power reactors do have a pressure vessel, they are generally classified by the type of coolant rather than by the configuration of the vessel used to contain the coolant.
Nuclear Regulatory Commission
The Nuclear Regulatory Commission (NRC) is an independent agency of the United States government tasked with protecting public health and safety related to nuclear energy. Established by the Energy Reorganization Act of 1974, the NRC began operations on January 19, 1975, as one of two successor agencies to the United States Atomic Energy Commission. Its functions include overseeing reactor safety and security, administering reactor licensing and renewal, licensing radioactive materials, radionuclide safety, and managing the storage, security, recycling, and disposal of spent fuel.
Show more