In mathematics, the Zernike polynomials are a sequence of polynomials that are orthogonal on the unit disk. Named after optical physicist Frits Zernike, laureate of the 1953 Nobel Prize in Physics and the inventor of phase-contrast microscopy, they play important roles in various optics branches such as beam optics and imaging.
There are even and odd Zernike polynomials. The even Zernike polynomials are defined as
(even function over the azimuthal angle ), and the odd Zernike polynomials are defined as
(odd function over the azimuthal angle ) where m and n are nonnegative integers with n ≥ m ≥ 0 (m = 0 for spherical Zernike polynomials), is the azimuthal angle, ρ is the radial distance , and are the radial polynomials defined below. Zernike polynomials have the property of being limited to a range of −1 to +1, i.e. . The radial polynomials are defined as
for an even number of n − m, while it is 0 for an odd number of n − m. A special value is
Rewriting the ratios of factorials in the radial part as products of binomials shows that the coefficients are integer numbers:
A notation as terminating Gaussian hypergeometric functions is useful to reveal recurrences, to demonstrate that they are special cases of Jacobi polynomials, to write down the differential equations, etc.:
for n − m even.
The factor in the radial polynomial may be expanded in a Bernstein basis of for even or times a function of for odd in the range . The radial polynomial may therefore be expressed by a finite number of Bernstein Polynomials with rational coefficients:
Applications often involve linear algebra, where an integral over a product of Zernike polynomials and some other factor builds a matrix elements.
To enumerate the rows and columns of these matrices by a single index, a conventional mapping of the two indices n and l to a single index j has been introduced by Noll. The table of this association starts as follows .
The rule is the following.
The even Zernike polynomials Z (with even azimuthal parts , where as is a positive number) obtain even indices j.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Introduction to computer-aided design of optical systems using "ZEMAX OpticStudio" optical design software. Principles of optical systems design and performance analysis with geometrical optics and ra
In optics, tilt is a deviation in the direction a beam of light propagates. Tilt quantifies the average slope in both the X and Y directions of a wavefront or phase profile across the pupil of an optical system. In conjunction with piston (the first Zernike polynomial term), X and Y tilt can be modeled using the second and third Zernike polynomials: X-Tilt: Y-Tilt: where is the normalized radius with and is the azimuthal angle with . The and coefficients are typically expressed as a fraction of a chosen wavelength of light.
Fourier optics is the study of classical optics using Fourier transforms (FTs), in which the waveform being considered is regarded as made up of a combination, or superposition, of plane waves. It has some parallels to the Huygens–Fresnel principle, in which the wavefront is regarded as being made up of a combination of spherical wavefronts (also called phasefronts) whose sum is the wavefront being studied. A key difference is that Fourier optics considers the plane waves to be natural modes of the propagation medium, as opposed to Huygens–Fresnel, where the spherical waves originate in the physical medium.
In optics, aberration is a property of optical systems, such as lenses, that causes light to be spread out over some region of space rather than focused to a point. Aberrations cause the image formed by a lens to be blurred or distorted, with the nature of the distortion depending on the type of aberration. Aberration can be defined as a departure of the performance of an optical system from the predictions of paraxial optics.
In this paper we derive scalar analytical expressions describing the full field dependence of Zernike polynomials in optical systems without symmetries. We consider the general case of optical systems constituted by arbitrarily tilted and decentered circul ...
2020
The present work deals with monochromatic wavefront aberrations in optical systems without symmetries. The treatment begins with a class of systems characterized by misaligned spherical surfaces whose behavior is analyzed using the wavefront aberration exp ...
We exhibit non-equivariant perturbations of the blowup solutions constructed in [18] for energy critical wave maps into S2. Our admissible class of perturbations is an open set in some sufficiently smooth topology and vanishes near the light co ...