In mathematics, Hilbert spaces (named after David Hilbert) allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space. The earliest Hilbert spaces were studied from this point of view in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz. They are indispensable tools in the theories of partial differential equations, quantum mechanics, Fourier analysis (which includes applications to signal processing and heat transfer), and ergodic theory (which forms the mathematical underpinning of thermodynamics). John von Neumann coined the term Hilbert space for the abstract concept that underlies many of these diverse applications. The success of Hilbert space methods ushered in a very fruitful era for functional analysis. Apart from the classical Euclidean vector spaces, examples of Hilbert spaces include spaces of square-integrable functions, spaces of sequences, Sobolev spaces consisting of generalized functions, and Hardy spaces of holomorphic functions. Geometric intuition plays an important role in many aspects of Hilbert space theory. Exact analogs of the Pythagorean theorem and parallelogram law hold in a Hilbert space. At a deeper level, perpendicular projection onto a linear subspace or a subspace (the analog of "dropping the altitude" of a triangle) plays a significant role in optimization problems and other aspects of the theory. An element of a Hilbert space can be uniquely specified by its coordinates with respect to an orthonormal basis, in analogy with Cartesian coordinates in classical geometry. When this basis is countably infinite, it allows identifying the Hilbert space with the space of the infinite sequences that are square-summable.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (48)
MATH-404: Functional analysis II
We introduce locally convex vector spaces. As an example we treat the space of test functions and the space of distributions. In the second part of the course, we discuss differential calculus in Bana
MATH-468: Numerics for fluids, structures & electromagnetics
Cours donné en alternance tous les deux ans
COM-514: Mathematical foundations of signal processing
A theoretical and computational framework for signal sampling and approximation is presented from an intuitive geometric point of view. This lecture covers both mathematical and practical aspects of
Show more
Related lectures (295)
Linear Algebra Concepts: Motivation for Studying Eigenmodes in Physical Systems
Explores the motivation for studying linear algebra concepts in eigenmodes of physical systems and their central role in quantum mechanics.
Orthonormal Sequences and Hilbert Spaces
Explores orthonormal sequences, Bessel's inequality, and unique decompositions in Hilbert spaces.
Interpolation Spaces
Explores interpolation spaces in Banach spaces, emphasizing real continuous interpolation spaces and the K-method.
Show more
Related publications (395)

SPACE-TIME REDUCED BASIS METHODS FOR PARAMETRIZED UNSTEADY STOKES EQUATIONS

Simone Deparis, Riccardo Tenderini, Nicholas Mueller

In this work, we analyze space-time reduced basis methods for the efficient numerical simulation of haemodynamics in arteries. The classical formulation of the reduced basis (RB) method features dimensionality reduction in space, while finite difference sc ...
Philadelphia2024

Shape Holomorphy of Boundary Integral Operators on Multiple Open Arcs

Fernando José Henriquez Barraza

We establish shape holomorphy results for general weakly- and hyper-singular boundary integral operators arising from second-order partial differential equations in unbounded two-dimensional domains with multiple finite-length open arcs. After recasting th ...
New York2024

Multigraded algebras and multigraded linear series

Leonid Monin, Fatemeh Mohammadi, Yairon Cid Ruiz

This paper is devoted to the study of multigraded algebras and multigraded linear series. For an NsNs\mathbb {N}s-graded algebra AAA, we define and study its volume function FA:N+s -> RFA:N+sRF_A:\mathbb {N}_+s\rightarrow \mathbb {R}, which computes the ...
Wiley2024
Show more
Related concepts (240)
Elliptic boundary value problem
In mathematics, an elliptic boundary value problem is a special kind of boundary value problem which can be thought of as the stable state of an evolution problem. For example, the Dirichlet problem for the Laplacian gives the eventual distribution of heat in a room several hours after the heating is turned on. Differential equations describe a large class of natural phenomena, from the heat equation describing the evolution of heat in (for instance) a metal plate, to the Navier-Stokes equation describing the movement of fluids, including Einstein's equations describing the physical universe in a relativistic way.
Orthogonal complement
In the mathematical fields of linear algebra and functional analysis, the orthogonal complement of a subspace W of a vector space V equipped with a bilinear form B is the set W⊥ of all vectors in V that are orthogonal to every vector in W. Informally, it is called the perp, short for perpendicular complement. It is a subspace of V. Let be the vector space equipped with the usual dot product (thus making it an inner product space), and let with then its orthogonal complement can also be defined as being The fact that every column vector in is orthogonal to every column vector in can be checked by direct computation.
Frigyes Riesz
Frigyes Riesz (Riesz Frigyes, ˈriːs ˈfriɟɛʃ, sometimes spelled as Frederic; 22 January 1880 – 28 February 1956) was a Hungarian mathematician who made fundamental contributions to functional analysis, as did his younger brother Marcel Riesz. He was born into a Jewish family in Győr, Austria-Hungary and died in Budapest, Hungary. Between 1911 and 1919 he was a professor at the Franz Joseph University in Kolozsvár, Austria-Hungary.
Show more
Related MOOCs (15)
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.