Summary
In the study of graph coloring problems in mathematics and computer science, a greedy coloring or sequential coloring is a coloring of the vertices of a graph formed by a greedy algorithm that considers the vertices of the graph in sequence and assigns each vertex its first available color. Greedy colorings can be found in linear time, but they do not, in general, use the minimum number of colors possible. Different choices of the sequence of vertices will typically produce different colorings of the given graph, so much of the study of greedy colorings has concerned how to find a good ordering. There always exists an ordering that produces an optimal coloring, but although such orderings can be found for many special classes of graphs, they are hard to find in general. Commonly used strategies for vertex ordering involve placing higher-degree vertices earlier than lower-degree vertices, or choosing vertices with fewer available colors in preference to vertices that are less constrained. Variations of greedy coloring choose the colors in an online manner, without any knowledge of the structure of the uncolored part of the graph, or choose other colors than the first available in order to reduce the total number of colors. Greedy coloring algorithms have been applied to scheduling and register allocation problems, the analysis of combinatorial games, and the proofs of other mathematical results including Brooks' theorem on the relation between coloring and degree. Other concepts in graph theory derived from greedy colorings include the Grundy number of a graph (the largest number of colors that can be found by a greedy coloring), and the well-colored graphs, graphs for which all greedy colorings use the same number of colors. The greedy coloring for a given vertex ordering can be computed by an algorithm that runs in linear time. The algorithm processes the vertices in the given ordering, assigning a color to each one as it is processed. The colors may be represented by the numbers and each vertex is given the color with the smallest number that is not already used by one of its neighbors.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.