**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Unit# Theory of calculation 2

Laboratory

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related people

Loading

Units doing similar research

Loading

Related research domains

Loading

Related publications

Loading

Related publications (78)

Loading

Loading

Loading

Related people (23)

Units doing similar research (104)

Related research domains (61)

Approximation algorithm

In computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems (in particular NP-hard problems) with provable

Algorithm

In mathematics and computer science, an algorithm (ˈælɡərɪðəm) is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algo

Problem solving

Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions range from simple personal tasks (e.g. how to turn on an a

Submodular functions are a widely studied topic in theoretical computer science. They have found several applications both theoretical and practical in the fields of economics, combinatorial optimization and machine learning. More recently, there have also been numerous works that study combinatorial problems with submodular objective functions. This is motivated by their natural diminishing returns property which is useful in real-world applications. The thesis at hand is concerned with the study of streaming and matching problems with submodular functions.Firstly, motivated by developing robust algorithms, we propose a new adversarial injections model, in which the input is ordered randomly, but an adversary may inject misleading elements at arbitrary positions. We study the maximum matching problem and cardinality constrained monotone submodular maximization. We show that even under this seemingly powerful adversary, it is possible to break the barrier of 1/2 for both these problems in the streaming setting. Our main result is a novel streaming algorithm that computes a 0.55-approximation for cardinality constrained monotone submodular maximization.In the second part of the thesis, we study the problem of matroid intersection in the semi-streaming setting. Our main result is a (2 + e)-approximate semi-streaming algorithm for weighted matroid inter- section improving upon the previous best guarantee of 4 + e. While our algorithm is based on the local ratio technique, its analysis differs from the related problem of weighted maximum matching and uses the concept of matroid kernels. We are also able to generalize our results to work for submodular functions by adapting ideas from a recent result by Levin and Wajc (SODA'21) on submodular maximization subject to matching constraints.Finally, we study the submodular Santa Claus problem in the restricted assignment case. The submodular Santa Claus problem was introduced in a seminal work by Goemans, Harvey, Iwata, and Mirrokni (SODA'09) as an application of their structural result. In the mentioned problem n unsplittable resources have to be assigned to m players, each with a monotone submodular utility function fi. The goal is to maximize mini fi(Si) where S1, . . . , Sm is a partition of the resources. The result by Goemans et al. implies a polynomial time O(n1/2+e)-approximation algorithm. In the restricted assignment case, each player is given a set of desired resources Gi and the individual valuation functions are defined as fi(S)= f(SnGi). OurmainresultisaO(loglog(n))-approximation algorithm for the problem. Our proof is inspired by the approach of Bansal and Srividenko (STOC'06) to the Santa Claus problem. Com- pared to the more basic linear setting, the introduction of submodularity requires a much more involved analysis and several new ideas.

Lars Rohwedder, Ola Nils Anders Svensson

We relate discrepancy theory with the classic scheduling problems of minimizing max flow time and total flow time on unrelated machines. Specifically, we give a general reduction that allows us to transfer discrepancy bounds in the prefix Beck-Fiala (bounded iota 1-norm) setting to bounds on the flow time of an optimal schedule. Combining our reduction with a deep result proved by Banaszczyk via convex geometry, give guarantees of O(root logn) and O( root logn logp) for max flow time and total flow time, respectively, improving upon the previous best guarantees of O(logn) and O( log n log p). Apart from the improved guarantees, the reduction motivates seemingly easy versions of prefix discrepancy questions: any constant bound on prefix Beck-Fiala where vectors have sparsity two (sparsity one being trivial) would already yield tight guarantees for both max flow time and total flow time. While known techniques solve this case when the entries take values in {-1, 0, 1}, we show that they are unlikely to transfer to the more general 2-sparse case of bounded iota 1-norm.

Weighted flow time is a fundamental and very well-studied objective function in scheduling. In this paper, we study the setting of a single machine with preemptions. The input consists of a set of jobs, characterized by their processing times, release times, and weights and we want to compute a (possibly preemptive) schedule for them. The objective is to minimize the sum of the weighted flow times of the jobs, where the flow time of a job is the time between its release date and its completion time. It had been a long-standing open problem to find a polynomial time O(1)-approximation algorithm for this setting. In a recent break-through result, Batra, Garg, and Kumar (FOCS 2018) found such an algorithm if the input data are polynomially bounded integers, and Feige, Kulkarni, and Li (SODA 2019) presented a black-box reduction to this setting. The resulting approximation ratio is a (not explicitly stated) constant which is at least 10000. In this paper we improve this ratio to 2 + epsilon. The algorithm by Batra, Garg, and Kumar (FOCS 2018) reduces the problem to DEMAND MULTICUT ON TREES and solves the resulting instances via LP-rounding and a dynamic program. Instead, we first reduce the problem to a (different) geometric problem while losing only a factor 1 + epsilon, and then solve its resulting instances up to a factor of 2 + epsilon by a dynamic program. In particular, our reduction ensures certain structural properties, thanks to which we do not need LP-rounding methods. We believe that our result makes substantial progress towards finding a PTAS for weighted flow time on a single machine.