Earthquake engineering is an interdisciplinary branch of engineering that designs and analyzes structures, such as buildings and bridges, with earthquakes in mind. Its overall goal is to make such structures more resistant to earthquakes. An earthquake (or seismic) engineer aims to construct structures that will not be damaged in minor shaking and will avoid serious damage or collapse in a major earthquake.
A properly engineered structure does not necessarily have to be extremely strong or expensive. It has to be properly designed to withstand the seismic effects while sustaining an acceptable level of damage.
Earthquake engineering is a scientific field concerned with protecting society, the natural environment, and the man-made environment from earthquakes by limiting the seismic risk to socio-economically acceptable levels. Traditionally, it has been narrowly defined as the study of the behavior of structures and geo-structures subject to seismic loading; it is considered as a subset of structural engineering, geotechnical engineering, mechanical engineering, chemical engineering, applied physics, etc. However, the tremendous costs experienced in recent earthquakes have led to an expansion of its scope to encompass disciplines from the wider field of civil engineering, mechanical engineering, nuclear engineering, and from the social sciences, especially sociology, political science, economics, and finance.
The main objectives of earthquake engineering are:
Foresee the potential consequences of strong earthquakes on urban areas and civil infrastructure.
Design, construct and maintain structures to perform at earthquake exposure up to the expectations and in compliance with building codes.
Seismic loading
Seismic loading means application of an earthquake-generated excitation on a structure (or geo-structure). It happens at contact surfaces of a structure either with the ground, with adjacent structures, or with gravity waves from tsunami. The loading that is expected at a given location on the Earth's surface is estimated by engineering seismology.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Quantitative decision making based on life-cycle considerations that incorporate direct losses, seismic risk assessment, and collapse. Seismic hazard analysis, response simulation, damage and loss est
This course presents the classical and new approaches required to study the source mechanisms of earthquakes, combining theory and observations in a unified methodology, with a key focus on the mechan
This course deals with the main aspects of seismic design and assessment of buildings including conceptual design. It covers different structural design and evaluation philosophies for new and existin
Slope stability refers to the condition of inclined soil or rock slopes to withstand or undergo movement; the opposite condition is called slope instability or slope failure. The stability condition of slopes is a subject of study and research in soil mechanics, geotechnical engineering and engineering geology. Analyses are generally aimed at understanding the causes of an occurred slope failure, or the factors that can potentially trigger a slope movement, resulting in a landslide, as well as at preventing the initiation of such movement, slowing it down or arresting it through mitigation countermeasures.
On 26 December 2004, at 07:58:53 local time (UTC+7), a major earthquake with a magnitude of 9.1–9.3 struck with an epicentre off the west coast of northern Sumatra, Indonesia. The undersea megathrust earthquake, known by the scientific community as the Sumatra–Andaman earthquake, was caused by a rupture along the fault between the Burma Plate and the Indian Plate, and reached a Mercalli intensity up to IX in some areas.
Seismic base isolation, also known as base isolation, or base isolation system, is one of the most popular means of protecting a structure against earthquake forces. It is a collection of structural elements which should substantially decouple a superstructure from its substructure that is in turn resting on the shaking ground, thus protecting a building or non-building structure's integrity. Base isolation is one of the most powerful tools of earthquake engineering pertaining to the passive structural vibration control technologies.
Explores seismic assessment of masonry structures, focusing on out-of-plane failure of URM walls and its impact on earthquake-prone regions.
Explores seismic design, comparing conventional and capacity design approaches for structures subjected to earthquakes.
Explores earthquake effects, seismic hazards, building damage, and seismic design principles, emphasizing the importance of deformation capacity in structures.
Image information about the state of a building after an earthquake, which can be collected without endangering the post-earthquake reconnaissance activities, can be used to reduce uncertainties in response predictions for future seismic events. This paper ...
Springer2024
Steel frame structures are essential components of modern infrastructure. Understanding their behavior under seismic loading is critical for ensuring public safety and minimizing damage that occurs during earthquakes. To accurately predict the response of ...
EPFL2024
, ,
Masonry aggregates, which emerged as layouts of cities and villages became denser, make up historical centres all over the world. In these aggregates, neighbouring structures may share structural walls that are joined at the interfaces by mortar or interlo ...