Bacterioplankton refers to the bacterial component of the plankton that drifts in the water column. The name comes from the Ancient Greek word πλανκτος (planktos), meaning "wanderer" or "drifter", and bacterium, a Latin term coined in the 19th century by Christian Gottfried Ehrenberg. They are found in both seawater and freshwater.
Bacterioplankton occupy a range of ecological niches in marine and aquatic ecosystems. They are both primary producers and primary consumers in these ecosystems and drive global biogeochemical cycling of elements essential for life (e.g., carbon and nitrogen). Many bacterioplankton species are autotrophic, and derive energy from either photosynthesis or chemosynthesis. Photosynthetic bacterioplankton are often categorized as picophytoplankton, and include major cyanobacterial groups such as Prochlorococcus and Synechococcus. Other heterotrophic bacterioplankton are saprotrophic, and obtain energy by consuming organic material produced by other organisms. This material may be dissolved in the medium and taken directly from there, or bacteria may live and grow in association with particulate material such as marine snow. Bacterioplankton play critical roles in global nitrogen fixation, nitrification, denitrification, remineralisation and methanogenesis.
Bacterioplankton abundance depends on environmental variables like temperature, nutrient availability and predation. Like other small plankton, the bacterioplankton are preyed upon by zooplankton (usually protozoans), and their numbers are also controlled through infection by bacteriophages.
Photosynthetic bacterioplankton are responsible for a large proportion of the total primary production of aquatic food webs, supplying organic compounds to higher trophic levels. These bacteria undergo oxygenic and anoxygenic photosynthesis. Differences between these processes can be seen in the byproducts produced, the primary electron donor, and the light harvesting pigments used for energy capture.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Marine microorganisms are defined by their habitat as microorganisms living in a marine environment, that is, in the saltwater of a sea or ocean or the brackish water of a coastal estuary. A microorganism (or microbe) is any microscopic living organism or virus, that is too small to see with the unaided human eye without magnification. Microorganisms are very diverse. They can be single-celled or multicellular and include bacteria, archaea, viruses and most protozoa, as well as some fungi, algae, and animals, such as rotifers and copepods.
Picoplankton is the fraction of plankton composed by cells between 0.2 and 2 μm that can be either prokaryotic and eukaryotic phototrophs and heterotrophs: photosynthetic Photosynthetic picoplankton heterotrophic Heterotrophic picoplankton They are prevalent amongst microbial plankton communities of both freshwater and marine ecosystems. They have an important role in making up a significant portion of the total biomass of phytoplankton communities. In general, plankton can be categorized on the basis of physiological, taxonomic, or dimensional characteristics.
Marine prokaryotes are marine bacteria and marine archaea. They are defined by their habitat as prokaryotes that live in marine environments, that is, in the saltwater of seas or oceans or the brackish water of coastal estuaries. All cellular life forms can be divided into prokaryotes and eukaryotes. Eukaryotes are organisms whose cells have a nucleus enclosed within membranes, whereas prokaryotes are the organisms that do not have a nucleus enclosed within a membrane.
Colloidal nuclear magnetic resonance (cNMR) spectroscopy on inorganic cesium lead halide nanocrystals (CsPbX3 NCs) is found to serve for noninvasive characterization and quantification of disorder within these structurally soft and labile particles. In par ...
Understanding the ecological impacts of viruses on natural and engineered ecosystems relies on the accurate identification of viral sequences from community sequencing data. To maximize viral recovery from metagenomes, researchers frequently combine viral ...
Climate change induced shifts in treeline position, both towards higher altitudes and latitudes induce changes in soil organic matter. Eventually, soil organic matter is transported to alpine and subarctic lakes with yet unknown consequences for dissolved ...