Photoproteins are a type of enzyme, made of protein, from bioluminescent organisms. They add to the function of the luciferins whose usual light-producing reaction is catalyzed by the enzyme luciferase.
The term photoprotein was first used to describe the unusual chemistry of the luminescent system of Chaetopterus (a marine Polychaete worm). This was meant to distinguish them from other light-producing proteins because these do not exhibit the usual luciferin-luciferase reaction.
Photoproteins do not display typical enzyme kinetics as seen in luciferases. Instead, when mixed with luciferin, they display luminescence proportional to the amount of the photoprotein. For example, the photoprotein aequorin produces a flash of light when luciferin and calcium are added, rather than the prolonged glow that is seen for luciferases when luciferin is added. In this respect, it may appear that photoproteins are not enzymes, when in fact they do catalyze their bioluminescence reactions. This is due to a fast catalytic step, which produces the light, and a slow regeneration step, where the oxyluciferin is freed and another molecule of luciferin is then enabled to bind to the enzyme. Because of the kinetically slow step, each aequorin molecule must "recharge" with another molecule of luciferin before it can emit light again, and this makes it appear as though it is not behaving as a typical enzyme.
Photoproteins form a stable luciferin-photoprotein complex, often until the addition of another required factor such as Ca2+ in the case of aequorin.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Luciferin () is a generic term for the light-emitting compound found in organisms that generate bioluminescence. Luciferins typically undergo an enzyme-catalyzed reaction with molecular oxygen. The resulting transformation, which usually involves splitting off a molecular fragment, produces an excited state intermediate that emits light upon decaying to its ground state. The term may refer to molecules that are substrates for both luciferases and photoproteins.
Luciferase is a generic term for the class of oxidative enzymes that produce bioluminescence, and is usually distinguished from a photoprotein. The name was first used by Raphaël Dubois who invented the words luciferin and luciferase, for the substrate and enzyme, respectively. Both words are derived from the Latin word lucifer, meaning "lightbearer", which in turn is derived from the Latin words for "light" (lux) and "to bring or carry" (ferre).
Bioluminescence is the production and emission of light by living organisms. It is a form of chemiluminescence. Bioluminescence occurs widely in marine vertebrates and invertebrates, as well as in some fungi, microorganisms including some bioluminescent bacteria, and terrestrial arthropods such as fireflies. In some animals, the light is bacteriogenic, produced by symbiotic bacteria such as those from the genus Vibrio; in others, it is autogenic, produced by the animals themselves.
Bioluminescent imaging is a powerful technique that enables imaging in living organisms with high sensitivity, low background signal, low cost and without the need for radioactivity. The emitted photons are produced in the oxidation reaction of luciferin c ...
in vivo bioluminescence imaging (BLi) is an optical molecular imaging technique used to visualize molecular and cellular processes in health and diseases and to follow the fate of cells with high sensitivity using luciferase-based gene reporters. The high ...
Elsevier2017
, , , , , ,
V groove GaAs/AlGaAs quantum wires are investigated by spatially resolved photoluminescence spectroscopy using a low-temperature scanning near- field optical microscope. The spectra along the wires feature several sharp emission lines, which are understood ...