A color space is a specific organization of colors. In combination with color profiling supported by various physical devices, it supports reproducible representations of color - whether such representation entails an analog or a digital representation. A color space may be arbitrary, i.e. with physically realized colors assigned to a set of physical color swatches with corresponding assigned color names (including discrete numbers in - for example - the Pantone collection), or structured with mathematical rigor (as with the NCS System, Adobe RGB and sRGB). A "color space" is a useful conceptual tool for understanding the color capabilities of a particular device or digital file. When trying to reproduce color on another device, color spaces can show whether shadow/highlight detail and color saturation can be retained, and by how much either will be compromised.
A "color model" is an abstract mathematical model describing the way colors can be represented as tuples of numbers (e.g. triples in RGB or quadruples in CMYK); however, a color model with no associated mapping function to an absolute color space is a more or less arbitrary color system with no connection to any globally understood system of color interpretation. Adding a specific mapping function between a color model and a reference color space establishes within the reference color space a definite "footprint", known as a gamut, and for a given color model, this defines a color space. For example, Adobe RGB and sRGB are two different absolute color spaces, both based on the RGB color model. When defining a color space, the usual reference standard is the CIELAB or CIEXYZ color spaces, which were specifically designed to encompass all colors the average human can see.
Since "color space" identifies a particular combination of the color model and the mapping function, the word is often used informally to identify a color model. However, even though identifying a color space automatically identifies the associated color model, this usage is incorrect in a strict sense.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours constitue la seconde partie d'un enseignement consacré aux bases théoriques et pratiques des systèmes d’information géographique. Il propose une introduction aux systèmes d’information géogra
Ce cours constitue la seconde partie d'un enseignement consacré aux bases théoriques et pratiques des systèmes d’information géographique. Il propose une introduction aux systèmes d’information géogra
Ce cours initie à la programmation en utilisant le langage C++. Il ne présuppose pas de connaissance préalable. Les aspects plus avancés (programmation orientée objet) sont donnés dans un cours suivan
Rec. 709, also known as Rec.709, BT.709, and ITU 709, is a standard developed by ITU-R for image encoding and signal characteristics of high-definition television. The most recent version is BT.709-6 released in 2015. BT.709-6 defines the Picture characteristics as having a (widescreen) of 16:9, 1080 active lines per picture, 1920 samples per line, and a square pixel aspect ratio. The first version of the standard was approved by the CCIR as Rec.709 in 1990 (there was also CCIR Rec.
In colorimetry, the Munsell color system is a color space that specifies colors based on three properties of color: hue (basic color), chroma (color intensity), and value (lightness). It was created by Albert H. Munsell in the first decade of the 20th century and adopted by the United States Department of Agriculture (USDA) as the official color system for soil research in the 1930s.
The RGB color model is an additive color model in which the red, green and blue primary colors of light are added together in various ways to reproduce a broad array of colors. The name of the model comes from the initials of the three additive primary colors, red, green, and blue. The main purpose of the RGB color model is for the sensing, representation, and display of images in electronic systems, such as televisions and computers, though it has also been used in conventional photography.
This course is an introduction to linear and discrete optimization.Warning: This is a mathematics course! While much of the course will be algorithmic in nature, you will still need to be able to p
The course teaches non von-Neumann architectures. The first part of the course deals with quantum computing, sensing, and communications. The second focuses on field-coupled and conduction-based nanoc
Repetition of the basic concepts of quantum mechanics and main numerical algorithms used for practical implementions. Basic principles of electronic structure methods:Hartree-Fock, many body perturbat
Megapixel single-photon avalanche diode (SPAD) arrays have been developed recently, opening up the possibility of deploying SPADs as general-purpose passive cameras for photography and computer vision. However, most previous work on SPADs has been limited ...
Recent work indicates that visual features are processed in a serially dependent manner: The decision about a stimulus feature in the present is influenced by the features of stimuli seen in the past, leading to serial dependence. It remains unclear, howev ...
ASSOC RESEARCH VISION OPHTHALMOLOGY INC2023
, , , ,
Traditionally, mass spectrometry (MS) output is the ion abundance plotted versus the ionic mass-to-charge ratio m/z. While employing only commercially available equipment, Charge Determination Analysis (CHARDA) adds a third dimension to MS, estimating for ...