Concept

Homological mirror symmetry

Homological mirror symmetry is a mathematical conjecture made by Maxim Kontsevich. It seeks a systematic mathematical explanation for a phenomenon called mirror symmetry first observed by physicists studying string theory. In an address to the 1994 International Congress of Mathematicians in Zürich, speculated that mirror symmetry for a pair of Calabi–Yau manifolds X and Y could be explained as an equivalence of a constructed from the algebraic geometry of X (the of coherent sheaves on X) and another triangulated category constructed from the symplectic geometry of Y (the derived ). Edward Witten originally described the topological twisting of the N=(2,2) supersymmetric field theory into what he called the A and B model topological string theories. These models concern maps from Riemann surfaces into a fixed target—usually a Calabi–Yau manifold. Most of the mathematical predictions of mirror symmetry are embedded in the physical equivalence of the A-model on Y with the B-model on its mirror X. When the Riemann surfaces have empty boundary, they represent the worldsheets of closed strings. To cover the case of open strings, one must introduce boundary conditions to preserve the supersymmetry. In the A-model, these boundary conditions come in the form of Lagrangian submanifolds of Y with some additional structure (often called a brane structure). In the B-model, the boundary conditions come in the form of holomorphic (or algebraic) submanifolds of X with holomorphic (or algebraic) vector bundles on them. These are the objects one uses to build the relevant categories. They are often called A and B branes respectively. Morphisms in the categories are given by the massless spectrum of open strings stretching between two branes. The closed string A and B models only capture the so-called topological sector—a small portion of the full string theory. Similarly, the branes in these models are only topological approximations to the full dynamical objects that are D-branes.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.