Homological mirror symmetry is a mathematical conjecture made by Maxim Kontsevich. It seeks a systematic mathematical explanation for a phenomenon called mirror symmetry first observed by physicists studying string theory.
In an address to the 1994 International Congress of Mathematicians in Zürich, speculated that mirror symmetry for a pair of Calabi–Yau manifolds X and Y could be explained as an equivalence of a constructed from the algebraic geometry of X (the of coherent sheaves on X) and another triangulated category constructed from the symplectic geometry of Y (the derived ).
Edward Witten originally described the topological twisting of the N=(2,2) supersymmetric field theory into what he called the A and B model topological string theories. These models concern maps from Riemann surfaces into a fixed target—usually a Calabi–Yau manifold. Most of the mathematical predictions of mirror symmetry are embedded in the physical equivalence of the A-model on Y with the B-model on its mirror X. When the Riemann surfaces have empty boundary, they represent the worldsheets of closed strings. To cover the case of open strings, one must introduce boundary conditions to preserve the supersymmetry. In the A-model, these boundary conditions come in the form of Lagrangian submanifolds of Y with some additional structure (often called a brane structure). In the B-model, the boundary conditions come in the form of holomorphic (or algebraic) submanifolds of X with holomorphic (or algebraic) vector bundles on them. These are the objects one uses to build the relevant categories. They are often called A and B branes respectively. Morphisms in the categories are given by the massless spectrum of open strings stretching between two branes.
The closed string A and B models only capture the so-called topological sector—a small portion of the full string theory. Similarly, the branes in these models are only topological approximations to the full dynamical objects that are D-branes.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Couvre les principes fondamentaux de la diffraction électronique et ses applications dans la compréhension des structures cristallines et de la symétrie, y compris les vecteurs de réseau, les plans de réseau et les techniques d'imagerie en champ sombre.
En géométrie algébrique et en physique théorique, la symétrie miroir est une relation entre des objets géométriques appelés variétés de Calabi–Yau. Le terme fait référence à une situation où deux variétés de Calabi–Yau ont une apparence géométrique très différente mais sont néanmoins équivalentes lorsqu'elles sont utilisées comme dimensions supplémentaires de la théorie des cordes. La symétrie miroir a été découverte par des physiciens.
En géométrie différentielle ou algébrique, les surfaces K3 sont les variétés de Calabi-Yau de plus petite dimension différentes des tores. Ce sont des variétés complexes de dimension complexe 2 compactes et kählériennes. Les surfaces K3 possèdent en outre la propriété d'être les seules variétés de Calabi-Yau distincte du 4-tore T d'un point de vue topologique ou différentiel. Cependant, en tant que variété complexe, il y a un nombre infini de surfaces K3 non isomorphes. On peut notamment les distinguer par le biais du .
Shing-Tung Yau ( ; ku1 sêng-tông), né le à Shantou, est un mathématicien chinois connu pour ses travaux en géométrie différentielle, et est à l'origine de la théorie des variétés de Calabi-Yau. Shing-Tung Yau naît dans la ville de Shantou, province de Guangdong (Chine) dans une famille de huit enfants. Son père, un professeur de philosophie, est mort alors qu'il avait quatorze ans. Il déménage à Hong Kong avec sa famille, où il étudie les mathématiques à l'université chinoise de Hong Kong de 1966 à 1969.
We extend the group-theoretic notion of conditional flatness for a localization functor to any pointed category, and investigate it in the context of homological categories and of semi-abelian categories. In the presence of functorial fiberwise localizatio ...
Classical Serre-Tate theory describes deformations of ordinary abelian varieties. It implies that every such variety has a canonical lift to characteristic zero and equips the base of its universal deformation with a Frobenius lifting and canonical multipl ...
WALTER DE GRUYTER GMBH2021
We provide a new description of the complex computing the Hochschild homology of an -unitary -algebra as a derived tensor product such that: (1) there is a canonical morphism from it to the complex computing the cyclic homology of that was introduced by Ko ...