In mathematics, the Selberg class is an axiomatic definition of a class of L-functions. The members of the class are Dirichlet series which obey four axioms that seem to capture the essential properties satisfied by most functions that are commonly called L-functions or zeta functions. Although the exact nature of the class is conjectural, the hope is that the definition of the class will lead to a classification of its contents and an elucidation of its properties, including insight into their relationship to automorphic forms and the Riemann hypothesis. The class was defined by Atle Selberg in , who preferred not to use the word "axiom" that later authors have employed.
The formal definition of the class S is the set of all Dirichlet series
absolutely convergent for Re(s) > 1 that satisfy four axioms (or assumptions as Selberg calls them):
The condition that the real part of μi be non-negative is because there are known L-functions that do not satisfy the Riemann hypothesis when μi is negative. Specifically, there are Maass forms associated with exceptional eigenvalues, for which the Ramanujan–Peterssen conjecture holds, and have a functional equation, but do not satisfy the Riemann hypothesis.
The condition that θ < 1/2 is important, as the θ = 1 case includes whose zeros are not on the critical line.
Without the condition there would be which violates the Riemann hypothesis.
It is a consequence of 4. that the an are multiplicative and that
The prototypical example of an element in S is the Riemann zeta function. Another example, is the L-function of the modular discriminant Δ
where and τ(n) is the Ramanujan tau function.
All known examples are automorphic L-functions, and the reciprocals of Fp(s) are polynomials in p−s of bounded degree.
The best results on the structure of the Selberg class are due to Kaczorowski and Perelli, who show that the Dirichlet L-functions (including the Riemann zeta-function) are the only examples with degree less than 2.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by , after whom it is named.
We prove a general subconvex bound in the level aspect for Rankin–Selberg L-functions associated with two primitive holomorphic or Maass cusp forms over Q. We use this bound to establish the equidistribution of incomplete Galois orbits of Heegner points on ...
We provide dramatic evidence that 'Mellin space' is the natural home for correlation functions in CFTs with weakly coupled bulk duals. In Mellin space, CFT correlators have poles corresponding to an OPE decomposition into 'left' and 'right' sub-correlators ...