Parametric statistics is a branch of statistics which assumes that sample data comes from a population that can be adequately modeled by a probability distribution that has a fixed set of parameters. Conversely a non-parametric model does not assume an explicit (finite-parametric) mathematical form for the distribution when modeling the data. However, it may make some assumptions about that distribution, such as continuity or symmetry.
Most well-known statistical methods are parametric. Regarding nonparametric (and semiparametric) models, Sir David Cox has said, "These typically involve fewer assumptions of structure and distributional form but usually contain strong assumptions about independencies".
The normal family of distributions all have the same general shape and are parameterized by mean and standard deviation. That means that if the mean and standard deviation are known and if the distribution is normal, the probability of any future observation lying in a given range is known.
Suppose that we have a sample of 99 test scores with a mean of 100 and a standard deviation of 1. If we assume all 99 test scores are random observations from a normal distribution, then we predict there is a 1% chance that the 100th test score will be higher than 102.33 (that is, the mean plus 2.33 standard deviations), assuming that the 100th test score comes from the same distribution as the others. Parametric statistical methods are used to compute the 2.33 value above, given 99 independent observations from the same normal distribution.
A non-parametric estimate of the same thing is the maximum of the first 99 scores. We don't need to assume anything about the distribution of test scores to reason that before we gave the test it was equally likely that the highest score would be any of the first 100. Thus there is a 1% chance that the 100th score is higher than any of the 99 that preceded it.
Parametric statistics was mentioned by R. A. Fisher in his work Statistical Methods for Research Workers in 1925, which created the foundation for modern statistics.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
Nonparametric statistics is the type of statistics that is not restricted by assumptions concerning the nature of the population from which a sample is drawn. This is opposed to parametric statistics, for which a problem is restricted a priori by assumptions concerning the specific distribution of the population (such as the normal distribution) and parameters (such the mean or variance).
In statistics, the standard deviation is a measure of the amount of variation or dispersion of a set of values. A low standard deviation indicates that the values tend to be close to the mean (also called the expected value) of the set, while a high standard deviation indicates that the values are spread out over a wider range. Standard deviation may be abbreviated SD, and is most commonly represented in mathematical texts and equations by the lower case Greek letter σ (sigma), for the population standard deviation, or the Latin letter s, for the sample standard deviation.
Covers spectral estimation techniques like tapering and parametric estimation, emphasizing the importance of AR models and Whittle likelihood in time series analysis.
Covers spectral estimation in time series analysis, including imaging kernels, tapering methods, and AR models.
Explores the statistical summary of drop properties and the significance of drop size distribution in cloud and precipitation formation.
Higher-order asymptotics provide accurate approximations for use in parametric statistical modelling. In this thesis, we investigate using higher-order approximations in two-specific settings, with a particular emphasis on the tangent exponential model. Th ...
Stochastic Maximum Likelihood (SML) is a popular direction of arrival (DOA) estimation technique in array signal processing. It is a parametric method that jointly estimates signal and instrument noise by maximum likelihood, achieving excellent statistical ...
2021
, , , , , , , , , ,
Recovering the distribution from multi-echo magnetic resonance (MR) signals is challenging but has high potential as it provides biomarkers characterizing the tissue micro-structure, such as the myelin water fraction (MWF). In this work, we propose to comb ...