In coordination chemistry, metal ammine complexes are metal complexes containing at least one ammonia () ligand. "Ammine" is spelled this way due to historical reasons; in contrast, alkyl or aryl bearing ligands are spelt with a single "m". Almost all metal ions bind ammonia as a ligand, but the most prevalent examples of ammine complexes are for Cr(III), Co(III), Ni(II), Cu(II) as well as several platinum group metals.
Ammine complexes played a major role in the development of coordination chemistry, specifically determination of the stereochemistry and structure. They are easily prepared, and the metal-nitrogen ratio can be determined by elemental analysis. Through studies mainly on the ammine complexes, Alfred Werner developed his Nobel Prize-winning concept of the structure of coordination compounds (see Figure).
One of the first ammine complexes to be described was Magnus' green salt, which consists of the platinum tetrammine complex .
Ammonia is a Lewis base and a "pure" sigma donor. It is also compact such that steric effects are negligible. These factors simplify interpretation of structural and spectroscopic results.The Co–N distances in complexes have been examined closely by X-ray crystallography.
Homoleptic poly(ammine) complexes are known for many of the transition metals. Most often, they have the formula where n = 2, 3, and even 4 (M = Pt).
Platinum group metals form diverse ammine complexes. Pentaamine(dinitrogen)ruthenium(II) and the Creutz–Taube complex are well-studied examples of historic significance. The complex cis-, under the name Cisplatin, is an important anticancer drug. Pentamminerhodium chloride () is an intermediate in the purification of rhodium from its ores.
File:Carboplatin-skeletal.svg|[[Carboplatin]], a widely used anticancer drug.
File:(RhA5Cl)Cl2.png|[[Pentamminerhodium chloride]], the dichloride salt of a pentammine halide complex.
File:RuA5N2.png|[[Pentaamine(dinitrogen)ruthenium(II) chloride|Pentaamine(dinitrogen)ruthenium(II)]], the first [[metal dinitrogen complex]].
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course provides students with an overview over the basics of environmental chemistry. This includes the chemistry of natural systems, as well as the fate of anthropogenic chemicals in natural sys
Cobalt is a chemical element with the symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, produced by reductive smelting, is a hard, lustrous, silver metal. Cobalt-based blue pigments (cobalt blue) have been used since ancient times for jewelry and paints, and to impart a distinctive blue tint to glass, but the color was for a long time thought to be due to the known metal bismuth.
In chemistry, metal aquo complexes are coordination compounds containing metal ions with only water as a ligand. These complexes are the predominant species in aqueous solutions of many metal salts, such as metal nitrates, sulfates, and perchlorates. They have the general stoichiometry . Their behavior underpins many aspects of environmental, biological, and industrial chemistry. This article focuses on complexes where water is the only ligand ("homoleptic aquo complexes"), but of course many complexes are known to consist of a mix of aquo and other ligands.
Cisplatin is a chemotherapy medication used to treat a number of cancers. These include testicular cancer, ovarian cancer, cervical cancer, bladder cancer, head and neck cancer, esophageal cancer, lung cancer, mesothelioma, brain tumors and neuroblastoma. It is given by injection into a vein. Common side effects include bone marrow suppression, hearing problems, including total irreversible hearing loss, usually restricted to one ear, kidney damage, and vomiting.
Explores metal speciation, complexation, kinetics of ligand exchange reactions, and the relationship between thermodynamics and kinetics for metal complexes.
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
The combination of palladium salts and bipyridyl ligands can lead to the formation of a large variety of coordination complexes, with different shapes and sizes, displaying a very versatile host-guest chemistry. Increasing their structural complexity remai ...
EPFL2024
, , ,
One tetrahedral and two trigonal prismatic cages with π-basic Au3(pyrazolate)3 faces were obtained by connection of pre-formed gold complexes via dynamic covalent imine chemistry. The parallel arrangement of the Au3(pyrazolate)3 complexes in the prismatic ...
The synthesis of heterotrimetallic molecular cages is reported. The assemblies contain three types of coordination compounds: FeII clathrochelate complexes, AuI3(pyrazolate)3 complexes, and [PdII(pyridine)4]2+ complexes. The cages were obtained in a stepwi ...