In statistics, identifiability is a property which a model must satisfy for precise inference to be possible. A model is identifiable if it is theoretically possible to learn the true values of this model's underlying parameters after obtaining an infinite number of observations from it. Mathematically, this is equivalent to saying that different values of the parameters must generate different probability distributions of the observable variables. Usually the model is identifiable only under certain technical restrictions, in which case the set of these requirements is called the identification conditions.
A model that fails to be identifiable is said to be non-identifiable or unidentifiable: two or more parametrizations are observationally equivalent. In some cases, even though a model is non-identifiable, it is still possible to learn the true values of a certain subset of the model parameters. In this case we say that the model is partially identifiable. In other cases it may be possible to learn the location of the true parameter up to a certain finite region of the parameter space, in which case the model is set identifiable.
Aside from strictly theoretical exploration of the model properties, identifiability can be referred to in a wider scope when a model is tested with experimental data sets, using identifiability analysis.
Let be a statistical model with parameter space . We say that is identifiable if the mapping is one-to-one:
This definition means that distinct values of θ should correspond to distinct probability distributions: if θ1≠θ2, then also Pθ1≠Pθ2. If the distributions are defined in terms of the probability density functions (pdfs), then two pdfs should be considered distinct only if they differ on a set of non-zero measure (for example two functions ƒ1(x) = 10 ≤ x < 1 and ƒ2(x) = 10 ≤ x ≤ 1 differ only at a single point x = 1 — a set of measure zero — and thus cannot be considered as distinct pdfs).
Identifiability of the model in the sense of invertibility of the map is equivalent to being able to learn the model's true parameter if the model can be observed indefinitely long.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course will give a unified presentation of modern methods for causal inference. We focus on concepts, and we will present examples and ideas from various scientific disciplines, including medicin
This course introduces the principles of model identification for non-linear dynamic systems, and provides a set of possible solution methods that are thoroughly characterized in terms of modelling as
This course covers recent methodology for causal inference in settings with time-varying exposures (longitudinal data) and causally connected units (interference). We will consider theory for identifi
In economics and econometrics, the parameter identification problem arises when the value of one or more parameters in an economic model cannot be determined from observable variables. It is closely related to non-identifiability in statistics and econometrics, which occurs when a statistical model has more than one set of parameters that generate the same distribution of observations, meaning that multiple parameterizations are observationally equivalent.
In statistics, linear regression is a linear approach for modelling the relationship between a scalar response and one or more explanatory variables (also known as dependent and independent variables). The case of one explanatory variable is called simple linear regression; for more than one, the process is called multiple linear regression. This term is distinct from multivariate linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable.
In statistics, the term linear model is used in different ways according to the context. The most common occurrence is in connection with regression models and the term is often taken as synonymous with linear regression model. However, the term is also used in time series analysis with a different meaning. In each case, the designation "linear" is used to identify a subclass of models for which substantial reduction in the complexity of the related statistical theory is possible.
We develop theory and methodology for the problem of nonparametric registration of functional data that have been subjected to random deformation (warping) of their time scale. The separation of this phase variation ("horizontal" variation) from the amplit ...
2021
,
The clinical connectome fingerprint (CCF) was recently introduced as a way to assess brain dynamics. It is an approach able to recognize individuals, based on the brain network. It showed its applicability providing network features used to predict the cog ...
WILEY2022
, , ,
We revisit the problem of general identifiability originally introduced in [Lee et al., 2019] for causal inference and note that it is necessary to add positivity assumption of observational distribution to the original definition of the problem. We show t ...