Concept

Marine isotope stages

Summary
Marine isotope stages (MIS), marine oxygen-isotope stages, or oxygen isotope stages (OIS), are alternating warm and cool periods in the Earth's paleoclimate, deduced from oxygen isotope data derived from deep sea core samples. Working backwards from the present, which is MIS 1 in the scale, stages with even numbers have high levels of oxygen-18 and represent cold glacial periods, while the odd-numbered stages are lows in the oxygen-18 figures, representing warm interglacial intervals. The data are derived from pollen and foraminifera (plankton) remains in drilled marine sediment cores, sapropels, and other data that reflect historic climate; these are called proxies. The MIS timescale was developed from the pioneering work of Cesare Emiliani in the 1950s, and is now widely used in archaeology and other fields to express dating in the Quaternary period (the last 2.6 million years), as well as providing the fullest and best data for that period for paleoclimatology or the study of the early climate of the Earth, representing "the standard to which we correlate other Quaternary climate records". Emiliani's work in turn depended on Harold Urey's prediction in a paper of 1947 that the ratio between oxygen-18 and oxygen-16 isotopes in calcite, the main chemical component of the shells and other hard parts of a wide range of marine organisms, should vary depending on the prevailing water temperature in which the calcite was formed. Over 100 stages have been identified, currently going back some 6 million years, and the scale may in future reach back up to 15 mya. Some stages, in particular MIS 5, are divided into sub-stages, such as "MIS 5a", with 5 a, c, and e being warm and b and d cold. A numeric system for referring to "horizons" (events rather than periods) may also be used, with for example MIS 5.5 representing the peak point of MIS 5e, and 5.51, 5.52 etc. representing the peaks and troughs of the record at a still more detailed level. For more recent periods, increasingly precise resolution of timing continues to be developed.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.