Summary
In probability theory, an elementary event, also called an atomic event or sample point, is an event which contains only a single outcome in the sample space. Using set theory terminology, an elementary event is a singleton. Elementary events and their corresponding outcomes are often written interchangeably for simplicity, as such an event corresponding to precisely one outcome. The following are examples of elementary events: All sets where if objects are being counted and the sample space is (the natural numbers). if a coin is tossed twice. where stands for heads and for tails. All sets where is a real number. Here is a random variable with a normal distribution and This example shows that, because the probability of each elementary event is zero, the probabilities assigned to elementary events do not determine a continuous probability distribution. Elementary events may occur with probabilities that are between zero and one (inclusively). In a discrete probability distribution whose sample space is finite, each elementary event is assigned a particular probability. In contrast, in a continuous distribution, individual elementary events must all have a probability of zero. Some "mixed" distributions contain both stretches of continuous elementary events and some discrete elementary events; the discrete elementary events in such distributions can be called atoms or atomic events and can have non-zero probabilities. Under the measure-theoretic definition of a probability space, the probability of an elementary event need not even be defined. In particular, the set of events on which probability is defined may be some σ-algebra on and not necessarily the full power set.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.