In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events (subsets of the sample space).
For instance, if X is used to denote the outcome of a coin toss ("the experiment"), then the probability distribution of X would take the value 0.5 (1 in 2 or 1/2) for X = heads, and 0.5 for X = tails (assuming that the coin is fair). More commonly, probability distributions are used to compare the relative occurrence of many different random values.
Probability distributions can be defined in different ways and for discrete or for continuous variables. Distributions with special properties or for especially important applications are given specific names.
A probability distribution is a mathematical description of the probabilities of events, subsets of the sample space. The sample space, often denoted by , is the set of all possible outcomes of a random phenomenon being observed; it may be any set: a set of real numbers, a set of vectors, a set of arbitrary non-numerical values, etc. For example, the sample space of a coin flip would be Ω = {heads, tails}.
To define probability distributions for the specific case of random variables (so the sample space can be seen as a numeric set), it is common to distinguish between discrete and absolutely continuous random variables. In the discrete case, it is sufficient to specify a probability mass function assigning a probability to each possible outcome: for example, when throwing a fair dice, each of the six values 1 to 6 has the probability 1/6. The probability of an event is then defined to be the sum of the probabilities of the outcomes that satisfy the event; for example, the probability of the event "the die rolls an even value" is
In contrast, when a random variable takes values from a continuum then typically, any individual outcome has probability zero and only events that include infinitely many outcomes, such as intervals, can have positive probability.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
In probability theory and statistics, kurtosis (from κυρτός, kyrtos or kurtos, meaning "curved, arching") is a measure of the "tailedness" of the probability distribution of a real-valued random variable. Like skewness, kurtosis describes a particular aspect of a probability distribution. There are different ways to quantify kurtosis for a theoretical distribution, and there are corresponding ways of estimating it using a sample from a population. Different measures of kurtosis may have different interpretations.
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space.
Statistics (from German: Statistik, () "description of a state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal".
Explores probability theory through examples like bit strings, Bernoulli trials, and the Monty Hall problem, as well as the generalized Bayes' theorem and random variable distributions.
Introduces the basics of probability theory, covering Bernoulli trials, binomial distribution, Bayes' theorem, and random variables through practical examples.
We propose a novel approach to evaluating the ionic Seebeck coefficient in electrolytes from relatively short equilibrium molecular dynamics simulations, based on the Green-Kubo theory of linear response and Bayesian regression analysis. By exploiting the ...
As large, data-driven artificial intelligence models become ubiquitous, guaranteeing high data quality is imperative for constructing models. Crowdsourcing, community sensing, and data filtering have long been the standard approaches to guaranteeing or imp ...
EPFL2024
The probability of detecting technosignatures (i.e., evidence of technological activity beyond Earth) increases with their longevity, or the time interval over which they manifest. Therefore, the assumed distribution of longevities has some bearing on the ...