In , a is Cartesian closed if, roughly speaking, any morphism defined on a of two can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in mathematical logic and the theory of programming, in that their internal language is the simply typed lambda calculus. They are generalized by , whose internal language, linear type systems, are suitable for both quantum and classical computation.
Named after (1596–1650), French philosopher, mathematician, and scientist, whose formulation of analytic geometry gave rise to the concept of Cartesian product, which was later generalized to the notion of categorical product.
The category C is called Cartesian closed if and only if it satisfies the following three properties:
It has a terminal object.
Any two objects X and Y of C have a X ×Y in C.
Any two objects Y and Z of C have an exponential ZY in C.
The first two conditions can be combined to the single requirement that any finite (possibly empty) family of objects of C admit a product in C, because of the natural associativity of the categorical product and because the empty product in a category is the terminal object of that category.
The third condition is equivalent to the requirement that the functor – ×Y (i.e. the functor from C to C that maps objects X to X ×Y and morphisms φ to φ × idY) has a right adjoint, usually denoted –Y, for all objects Y in C.
For , this can be expressed by the existence of a bijection between the hom-sets
which is natural in X, Y, and Z.
Take care to note that a Cartesian closed category need not have finite limits; only finite products are guaranteed.
If a category has the property that all its are Cartesian closed, then it is called locally cartesian closed. Note that if C is locally Cartesian closed, it need not actually be Cartesian closed; that happens if and only if C has a terminal object.
For each object Y, the counit of the exponential adjunction is a natural transformation
called the (internal) evaluation map.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a topos (USˈtɒpɒs, UKˈtoʊpoʊs,_ˈtoʊpɒs; plural topoi ˈtɒpɔɪ or ˈtoʊpɔɪ, or toposes) is a that behaves like the category of sheaves of sets on a topological space (or more generally: on a site). Topoi behave much like the and possess a notion of localization; they are a direct generalization of point-set topology. The Grothendieck topoi find applications in algebraic geometry; the more general elementary topoi are used in logic. The mathematical field that studies topoi is called topos theory.
In mathematics, the category of topological spaces, often denoted Top, is the whose s are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again continuous, and the identity function is continuous. The study of Top and of properties of topological spaces using the techniques of is known as categorical topology. N.B. Some authors use the name Top for the categories with topological manifolds, with compactly generated spaces as objects and continuous maps as morphisms or with the .
NOTOC Categorical logic is the branch of mathematics in which tools and concepts from are applied to the study of mathematical logic. It is also notable for its connections to theoretical computer science. In broad terms, categorical logic represents both syntax and semantics by a , and an interpretation by a functor. The categorical framework provides a rich conceptual background for logical and type-theoretic constructions. The subject has been recognisable in these terms since around 1970.
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
Le but du cours de physique générale est de donner à l'étudiant.e les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant.e est capable d
Continuum conservation laws (e.g. mass, momentum and energy) will be introduced. Mathematical tools, including basic algebra and calculus of vectors and Cartesian tensors will be taught. Stress and de
In this paper, we consider the first eigenvalue.1(O) of the Grushin operator.G :=.x1 + |x1|2s.x2 with Dirichlet boundary conditions on a bounded domain O of Rd = R d1+ d2. We prove that.1(O) admits a unique minimizer in the class of domains with prescribed ...
In this thesis, we study interactions between algebraic and coalgebraic structures in infinity-categories (more precisely, in the quasicategorical model of (infinity, 1)-categories). We define a notion of a Hopf algebra H in an E-2-monoidal infinity-catego ...
Measuring the intensity of events is crucial for monitoring and tracking armed conflict. Advances in automated event extraction have yielded massive data sets of '' who did what to whom '' micro-records that enable datadriven approaches to monitoring confl ...