**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Course# PHYS-101(k): General physics : mechanics

Summary

Le but du cours de physique générale est de donner à l'étudiant.e les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant.e est capable de prévoir quantitativement les conséquences de ces phénomènes avec des outils théoriques appropriés.

Moodle Page

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Instructors

Loading

Lectures in this course

Loading

Related concepts

Loading

Related courses

Loading

Related MOOCs

Loading

Instructors (2)

Related MOOCs (47)

Lectures in this course (15)

Christophe Marcel Georges Galland

I studied at Ecole Polytechnique in Paris (X2003) and received my PhD in 2010 from ETH Zürich for a thesis in solid-state quantum optics with individual carbon nanotubes, in the Quantum Photonics Group of Prof. Ataç Imamoglu. As a postdoctoral researcher at Los Alamos National Lab (USA) I studied the photophysics of individual nanocrystal quantum dots in the groups of Victor Klimov and Han Htoon. I was investigating the mechanisms responsible for fluorescence fluctuations and how to control them. I then moved to the University of Delaware in the group of Michael Hochberg to work in the emerging field of integrated quantum optics. I was leading international projects such as the realisation of an on-chip source of quantum correlated photons integrating optical filters and demultiplexers. From 2013 to 2016, I was working at EPFL in the group of Prof. Kippenberg in the field of quantum optomechanics with an Ambizione Fellowship of the Swiss National Science Foundation (SNSF). My work focused on the creation of non-classical vibrational states of mesoscopic oscillators and on the amplification of vibrations in molecules. Since May 2017, I am leading the Laboratory of Quantum and Nano-Optics at EPFL as an SNSF-funded professor in the Institute of Physics. My team investigates two main phenomena: (i) the vibrational dynamics of molecules embedded in nanoscale plasmonic cavities, and (ii) non-classical correlations mediated by individual quanta of crystal vibrations at room-temperature. We employ state-of-the-art spectroscopic tools such as femtosecond lasers and single-photon counters to get new insights into sub-nanometer scale dynamics.

Related courses (79)

Related concepts (268)

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

General Physics: Mechanics

Covers the fundamental concepts of mechanics, focusing on topics such as terrestrial dynamics and reference frames.

General Physics: Mechanics

Explores moment of inertia in solids, center of mass calculations, and pendulum dynamics.

General Physics: Mechanics

Explores the concept of center of mass and its significance in simplifying the analysis of material points and solids.

General Physics: Mechanics

Delves into mechanics, exploring the symmetrical top problem, degrees of freedom, and conservation of energy.

Conservation of Mechanical Energy

Explores the conservation of mechanical energy and its application in solving physics problems involving work, stability, and energy transformations.

PHYS-101(g): General physics : mechanics

Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr

PHYS-100: Advanced physics I (mechanics)

La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l

PHYS-101(f): General physics : mechanics

Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr

PHYS-101(a): General physics : mechanics

Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr

PHYS-101(en): General physics : mechanics (English)

Students will learn the principles of mechanics to enable a better understanding of physical phenomena, such as the kinematics and dyamics of point masses and solid bodies. Students will acquire the c

This is a list of some vector calculus formulae for working with common curvilinear coordinate systems. This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): The polar angle is denoted by : it is the angle between the z-axis and the radial vector connecting the origin to the point in question. The azimuthal angle is denoted by : it is the angle between the x-axis and the projection of the radial vector onto the xy-plane.

In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a point is specified by three numbers: the radial distance of that point from a fixed origin; its polar angle measured from a fixed polar axis or zenith direction; and the azimuthal angle of its orthogonal projection on a reference plane that passes through the origin and is orthogonal to the fixed axis, measured from another fixed reference direction on that plane.

Mechanics (from Ancient Greek: μηχανική, mēkhanikḗ, "of machines") is the area of mathematics and physics concerned with the relationships between force, matter, and motion among physical objects. Forces applied to objects result in displacements or changes of an object's position relative to its environment. Theoretical expositions of this branch of physics has its origins in Ancient Greece, for instance, in the writings of Aristotle and Archimedes (see History of classical mechanics and Timeline of classical mechanics).

In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in . Inner products allow formal definitions of intuitive geometric notions, such as lengths, angles, and orthogonality (zero inner product) of vectors. Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or scalar product of Cartesian coordinates.

In mathematics, the dot product or scalar product is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used. It is often called the inner product (or rarely projection product) of Euclidean space, even though it is not the only inner product that can be defined on Euclidean space (see Inner product space for more).