Summary
In cryptography, Learning with errors (LWE) is a mathematical problem that is widely used in cryptography to create secure encryption algorithms. It is based on the idea of representing secret information as a set of equations with errors. In other words, LWE is a way to hide the value of a secret by introducing noise to it. In more technical terms, it refers to the computational problem of inferring a linear -ary function over a finite ring from given samples some of which may be erroneous. The LWE problem is conjectured to be hard to solve, and thus to be useful in cryptography. More precisely, the LWE problem is defined as follows. Let denote the ring of integers modulo and let denote the set of -vectors over . There exists a certain unknown linear function , and the input to the LWE problem is a sample of pairs , where and , so that with high probability . Furthermore, the deviation from the equality is according to some known noise model. The problem calls for finding the function , or some close approximation thereof, with high probability. The LWE problem was introduced by Oded Regev in 2005 (who won the 2018 Gödel Prize for this work), it is a generalization of the parity learning problem. Regev showed that the LWE problem is as hard to solve as several worst-case lattice problems. Subsequently, the LWE problem has been used as a hardness assumption to create public-key cryptosystems, such as the ring learning with errors key exchange by Peikert. Denote by the additive group on reals modulo one. Let be a fixed vector. Let be a fixed probability distribution over . Denote by the distribution on obtained as follows. Pick a vector from the uniform distribution over , Pick a number from the distribution , Evaluate , where is the standard inner product in , the division is done in the field of reals (or more formally, this "division by " is notation for the group homomorphism mapping to ), and the final addition is in . Output the pair . The learning with errors problem is to find , given access to polynomially many samples of choice from .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.