Category

Post-quantum cryptography

Summary
In cryptography, post-quantum cryptography (PQC) (sometimes referred to as quantum-proof, quantum-safe or quantum-resistant) refers to cryptographic algorithms (usually public-key algorithms) that are thought to be secure against a cryptanalytic attack by a quantum computer. The problem with currently popular algorithms is that their security relies on one of three hard mathematical problems: the integer factorization problem, the discrete logarithm problem or the elliptic-curve discrete logarithm problem. All of these problems could be easily solved on a sufficiently powerful quantum computer running Shor's algorithm. Even though current quantum computers lack processing power to break any real cryptographic algorithm, many cryptographers are designing new algorithms to prepare for a time when quantum computing becomes a threat. This work has gained greater attention from academics and industry through the PQCrypto conference series since 2006 and more recently by several workshops on Quantum Safe Cryptography hosted by the European Telecommunications Standards Institute (ETSI) and the Institute for Quantum Computing. The rumoured existence of widespread harvest now, decrypt later programs has also been seen as a motivation for the early introduction of post-quantum algorithms, as data recorded now may still remain sensitive many years into the future. In contrast to the threat quantum computing poses to current public-key algorithms, most current symmetric cryptographic algorithms and hash functions are considered to be relatively secure against attacks by quantum computers. While the quantum Grover's algorithm does speed up attacks against symmetric ciphers, doubling the key size can effectively block these attacks. Thus post-quantum symmetric cryptography does not need to differ significantly from current symmetric cryptography.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.