In computational complexity theory, a computational hardness assumption is the hypothesis that a particular problem cannot be solved efficiently (where efficiently typically means "in polynomial time"). It is not known how to prove (unconditional) hardness for essentially any useful problem. Instead, computer scientists rely on reductions to formally relate the hardness of a new or complicated problem to a computational hardness assumption about a problem that is better-understood.
Computational hardness assumptions are of particular importance in cryptography. A major goal in cryptography is to create cryptographic primitives with provable security. In some cases, cryptographic protocols are found to have information theoretic security; the one-time pad is a common example. However, information theoretic security cannot always be achieved; in such cases, cryptographers fall back to computational security. Roughly speaking, this means that these systems are secure assuming that any adversaries are computationally limited, as all adversaries are in practice.
Computational hardness assumptions are also useful for guiding algorithm designers: a simple algorithm is unlikely to refute a well-studied computational hardness assumption such as P ≠ NP.
Computer scientists have different ways of assessing which hardness assumptions are more reliable.
We say that assumption is stronger than assumption when implies (and the converse is false or not known).
In other words, even if assumption were false, assumption may still be true, and cryptographic protocols based on assumption may still be safe to use.
Thus when devising cryptographic protocols, one hopes to be able to prove security using the weakest possible assumptions.
Best, worst and average case
An average-case assumption says that a specific problem is hard on most instances from some explicit distribution, whereas a worst-case assumption only says that the problem is hard on some instances.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Probabilistic proof systems (eg PCPs and IPs) have had a tremendous impact on theoretical computer science, as well as on real-world secure systems. They underlie delegation of computation protocols a
This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how
Probabilistic proof system (eg PCPs and IPs) have had a tremendous impact on the theoretical computer science, and have also found practical uses. They underlie delegation of computation protocols and
In cryptography, post-quantum cryptography (PQC) (sometimes referred to as quantum-proof, quantum-safe or quantum-resistant) refers to cryptographic algorithms (usually public-key algorithms) that are thought to be secure against a cryptanalytic attack by a quantum computer. The problem with currently popular algorithms is that their security relies on one of three hard mathematical problems: the integer factorization problem, the discrete logarithm problem or the elliptic-curve discrete logarithm problem.
Cryptography, or cryptology (from κρυπτός "hidden, secret"; and γράφειν graphein, "to write", or -λογία -logia, "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others.
Lattice-based cryptography is the generic term for constructions of cryptographic primitives that involve lattices, either in the construction itself or in the security proof. Lattice-based constructions are currently important candidates for post-quantum cryptography. Unlike more widely used and known public-key schemes such as the RSA, Diffie-Hellman or elliptic-curve cryptosystems — which could, theoretically, be defeated using Shor's algorithm on a quantum computer — some lattice-based constructions appear to be resistant to attack by both classical and quantum computers.
Witness encryption is a cryptographic primitive which encrypts a message under an instance of an NP language and decrypts the ciphertext using a witness associated with that instance. In the current state of the art, most of the witness encryption construc ...
Springer2023
In the framework of Impagliazzo's five worlds, a distinction is often made between two worlds, one where public-key encryption exists (Cryptomania), and one in which only one-way functions exist (MiniCrypt). However, the boundaries between these worlds can ...
We study the privatization of distributed learning and optimization strategies. We focus on differential privacy schemes and study their effect on performance. We show that the popular additive random perturbation scheme degrades performance because it is ...