In polymer chemistry, polymerization (American English), or polymerisation (British English), is a process of reacting monomer molecules together in a chemical reaction to form polymer chains or three-dimensional networks. There are many forms of polymerization and different systems exist to categorize them.
In chemical compounds, polymerization can occur via a variety of reaction mechanisms that vary in complexity due to the functional groups present in the reactants and their inherent steric effects. In more straightforward polymerizations, alkenes form polymers through relatively simple radical reactions; in contrast, reactions involving substitution at a carbonyl group require more complex synthesis due to the way in which reactants polymerize. Alkanes can also be polymerized, but only with the help of strong acids.
As alkenes can polymerize in somewhat straightforward radical reactions, they form useful compounds such as polyethylene and polyvinyl chloride (PVC), which are produced in high tonnages each year due to their usefulness in manufacturing processes of commercial products, such as piping, insulation and packaging. In general, polymers such as PVC are referred to as "homopolymers", as they consist of repeated long chains or structures of the same monomer unit, whereas polymers that consist of more than one monomer unit are referred to as copolymers (or co-polymers).
Other monomer units, such as formaldehyde hydrates or simple aldehydes, are able to polymerize themselves at quite low temperatures (ca. −80 °C) to form trimers; molecules consisting of 3 monomer units, which can cyclize to form ring cyclic structures, or undergo further reactions to form tetramers, or 4 monomer-unit compounds. Such small polymers are referred to as oligomers. Generally, because formaldehyde is an exceptionally reactive electrophile it allows nucleophilic addition of hemiacetal intermediates, which are in general short-lived and relatively unstable "mid-stage" compounds that react with other non-polar molecules present to form more stable polymeric compounds.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Know modern methods of polymer synthesis. Understand how parameters, which determine polymer structure and properties, such as molecular weight, molecular weight distribution, topology, microstructure
The student has a basic understanding of the physical and physicochemical principles which result from the chainlike structure of synthetic macromolecules. The student can predict major characteristic
Polyethylene or polythene (abbreviated PE; IUPAC name polyethene or poly(methylene)) is the most commonly produced plastic. It is a polymer, primarily used for packaging (plastic bags, plastic films, geomembranes and containers including bottles, etc.). , over 100 million tonnes of polyethylene resins are being produced annually, accounting for 34% of the total plastics market. Many kinds of polyethylene are known, with most having the chemical formula (C2H4)n. PE is usually a mixture of similar polymers of ethylene, with various values of n.
In polymer chemistry, a copolymer is a polymer derived from more than one species of monomer. The polymerization of monomers into copolymers is called copolymerization. Copolymers obtained from the copolymerization of two monomer species are sometimes called bipolymers. Those obtained from three and four monomers are called terpolymers and quaterpolymers, respectively. Copolymers can be characterized by a variety of techniques such as NMR spectroscopy and size-exclusion chromatography to determine the molecular size, weight, properties, and composition of the material.
Polystyrene (PS) ˌpɒliˈstaɪriːn is a synthetic polymer made from monomers of the aromatic hydrocarbon styrene. Polystyrene can be solid or foamed. General-purpose polystyrene is clear, hard, and brittle. It is an inexpensive resin per unit weight. It is a poor barrier to oxygen and water vapor and has a relatively low melting point. Polystyrene is one of the most widely used plastics, with the scale of its production being several million tonnes per year. Polystyrene is naturally transparent, but can be colored with colorants.
Explores dimethyl carbonate production as a green alternative to phosgene, emphasizing its advantages and environmental benefits over traditional methods.
Delves into the entropic behavior of polymers through force-extension curves.
Explores polymer synthesis basics, including step and radical chain polymerization, molecular weight control, copolymerization, and crosslinked polymers for microengineering.
Provided herein are aerolysin polypeptides and/or mutant aerolysin monomers comprising modified amino acid sequences that could have improved substrate analyte, such as (poly)nucleotide and peptide, improved reading properties such as enhanced substrate an ...
2024
Mechanochemistry harnesses mechanical force to facilitate chemical reactions. Traditionally, the field of polymer mechanochemistry has used methods to activate chemical bonds, which use forces that are larger than those that are required to break a covalen ...
EPFL2024
, ,
The present specification relates to a fluorinated polyaromatic polymer comprising • at least one fluorinated unit FU of formula (I) and • at least one cationic unit CU of formula B or C. ...