Concept

Biological interaction

Summary
In ecology, a biological interaction is the effect that a pair of organisms living together in a community have on each other. They can be either of the same species (intraspecific interactions), or of different species (interspecific interactions). These effects may be short-term, or long-term, both often strongly influence the adaptation and evolution of the species involved. Biological interactions range from mutualism, beneficial to both partners, to competition, harmful to both partners. Interactions can be direct when physical contact is established or indirect, through intermediaries such as shared resources, territories, ecological services, metabolic waste, toxins or growth inhibitors. This type of relationship can be shown by net effect based on individual effects on both organisms arising out of relationship. Several recent studies have suggested non-trophic species interactions such as habitat modification and mutualisms can be important determinants of food web structures. However, it remains unclear whether these findings generalize across ecosystems, and whether non-trophic interactions affect food webs randomly, or affect specific trophic levels or functional groups. Although biological interactions, more or less individually, were studied earlier, Edward Haskell (1949) gave an integrative approach to the thematic, proposing a classification of "co-actions", later adopted by biologists as "interactions". Close and long-term interactions are described as symbiosis; symbioses that are mutually beneficial are called mutualistic. The term symbiosis was subject to a century-long debate about whether it should specifically denote mutualism, as in lichens or in parasites that benefit themselves. This debate created two different classifications for biotic interactions, one based on the time (long-term and short-term interactions), and other based on the magnitud of interaction force (competition/mutualism) or effect of individual fitness, according the stress gradient hypothesis and Mutualism Parasitism Continuum.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.