Gene–environment interaction (or genotype–environment interaction or G×E) is when two different genotypes respond to environmental variation in different ways. A norm of reaction is a graph that shows the relationship between genes and environmental factors when phenotypic differences are continuous. They can help illustrate GxE interactions. When the norm of reaction is not parallel, as shown in the figure below, there is a gene by environment interaction. This indicates that each genotype responds to environmental variation in a different way. Environmental variation can be physical, chemical, biological, behavior patterns or life events.
Gene–environment interactions are studied to gain a better understanding of various phenomena. In genetic epidemiology, gene–environment interactions are useful for understanding some diseases. Sometimes, sensitivity to environmental risk factors for a disease are inherited rather than the disease itself being inherited. Individuals with different genotypes are affected differently by exposure to the same environmental factors, and thus gene–environment interactions can result in different disease phenotypes. For example, sunlight exposure has a stronger influence on skin cancer risk in fair-skinned humans than in individuals with darker skin.
These interactions are of particular interest to genetic epidemiologists for predicting disease rates and methods of prevention with respect to public health. The term is also used amongst developmental psychobiologists to better understand individual and evolutionary development.
Nature versus nurture debates assume that variation in a trait is primarily due to either genetic differences or environmental differences. However, the current scientific opinion holds that neither genetic differences nor environmental differences are solely responsible for producing phenotypic variation, and that virtually all traits are influenced by both genetic and environmental differences.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Behavioural genetics, also referred to as behaviour genetics, is a field of scientific research that uses genetic methods to investigate the nature and origins of individual differences in behaviour. While the name "behavioural genetics" connotes a focus on genetic influences, the field broadly investigates the extent to which genetic and environmental factors influence individual differences, and the development of research designs that can remove the confounding of genes and environment.
Gene–environment correlation (or genotype–environment correlation) is said to occur when exposure to environmental conditions depends on an individual's genotype. Gene–environment correlations (or rGE) is correlation of two traits, e.g. height and weight, which would mean that when one changes, so does the other. Gene–environment correlations can arise by both causal and non-causal mechanisms. Of principal interest are those causal mechanisms which indicate genetic control over environmental exposure.
Intellectual disability (ID), also known as general learning disability in the United Kingdom and formerly mental retardation, is a generalized neurodevelopmental disorder characterized by significantly impaired intellectual and adaptive functioning. It is defined by an IQ under 70, in addition to deficits in two or more adaptive behaviors that affect everyday, general living.
Delves into life stories from an evolutionary viewpoint, covering gene-environment interactions, attachment theory, and gender differences.
Explores major biology themes and explains Mendel's laws of inheritance.
Explores genetic association study methods, challenges, and limitations in analyzing genetic data.
Long-term consumption of lipid-rich foods can contribute to common metabolic diseases and systemic low-grade inflammation. However, dietary responses and the development of non-communicable diseases are shaped by genetic factors and gene-by-environment int ...
Animals, including humans, exhibit a remarkable variety of complex behaviours. How the nervous system controls all these behaviours ranging from simple, stereotyped movements to flexible, adaptive actions is a central questions of neuroscience. One of the ...
In the past 20 years, our laboratory has proved the shine-through paradigm to be a very sensitive endophenotype for schizophrenia. The shine-through paradigm is a visual backward masking task, where the target is a vertical vernier followed by a 25-element ...