In natural science and signal processing, an artifact or artefact is any error in the perception or representation of any information introduced by the involved equipment or technique(s).
In computer science, digital artifacts are anomalies introduced into digital signals as a result of digital signal processing.
In microscopy, visual artifacts are sometimes introduced during the processing of samples into slide form.
In econometrics, which trades on computing relationships between related variables, an artifact is a spurious finding, such as one based on either a faulty choice of variables or an over-extension of the computed relationship. Such an artifact may be called a statistical artifact. For instance, imagine a hypothetical finding that presidential approval rating is approximately equal to twice the percentage of citizens making more than 50,000annually;if6050,000 annually, this would predict that the approval rating will be 120%. This prediction is a statistical artifact, since it is spurious to use the model when the percentage of citizens making over $50,000 is so high, and gross error to predict an approval rating greater than 100%.
In medical imaging, artifacts are misrepresentations of tissue structures produced by imaging techniques such as ultrasound, X-ray, CT scan, and magnetic resonance imaging (MRI). These artifacts may be caused by a variety of phenomena such as the underlying physics of the energy-tissue interaction as between ultrasound and air, susceptibility artifacts, data acquisition errors (such as patient motion), or a reconstruction algorithm's inability to represent the anatomy. Physicians typically learn to recognize some of these artifacts to avoid mistaking them for actual pathology.
In ultrasound imaging, several assumptions are made from the computer system to interpret the returning echoes.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Fundamental principles and methods used for physiological signal conditioning. Electrode, optical, resistive, capacitive, inductive, and piezoelectric sensor techniques used to detect and convert phys
Electroencephalography (EEG) is a method to record an electrogram of the spontaneous electrical activity of the brain. The biosignals detected by EEG have been shown to represent the postsynaptic potentials of pyramidal neurons in the neocortex and allocortex. It is typically non-invasive, with the EEG electrodes placed along the scalp (commonly called "scalp EEG") using the International 10–20 system, or variations of it. Electrocorticography, involving surgical placement of electrodes, is sometimes called "intracranial EEG".
Pathology is the study of the causes and effects of disease or injury. The word pathology also refers to the study of disease in general, incorporating a wide range of biology research fields and medical practices. However, when used in the context of modern medical treatment, the term is often used in a narrower fashion to refer to processes and tests that fall within the contemporary medical field of "general pathology", an area which includes a number of distinct but inter-related medical specialties that diagnose disease, mostly through analysis of tissue and human cell samples.
Medical imaging is the technique and process of imaging the interior of a body for clinical analysis and medical intervention, as well as visual representation of the function of some organs or tissues (physiology). Medical imaging seeks to reveal internal structures hidden by the skin and bones, as well as to diagnose and treat disease. Medical imaging also establishes a database of normal anatomy and physiology to make it possible to identify abnormalities.
Explores the significance of bone imaging in biomechanics, covering various modalities and techniques for image acquisition and reconstruction.
Explores nuclear magnetic resonance, MRI principles, pulse sequences, image reconstruction, safety considerations, and volume normalization in brain imaging.
Medipix4 is the latest member in the Medipix/Timepix family of pixel detector chips aimed at high rate spectroscopic X-ray imaging using high-Z materials. The chip address the limitations of conventional hybrid pixel detectors for X-ray imaging. Its predec ...
This paper aims at an accurate and efficient computation of effective quantities, e.g. the homogenized coefficients for approximating the solutions to partial differential equations with oscillatory coefficients. Typical multiscale methods are based on a m ...
WORLD SCIENTIFIC PUBL CO PTE LTD2021
, ,
Numerical multiscale methods usually rely on some coupling between a macroscopic and a microscopic model. The macroscopic model is incomplete as effective quantities, such as the homogenized material coefficients or fluxes, are missing in the model. These ...