Concept

Gravitoelectromagnetism

Summary
Gravitoelectromagnetism, abbreviated GEM, refers to a set of formal analogies between the equations for electromagnetism and relativistic gravitation; specifically: between Maxwell's field equations and an approximation, valid under certain conditions, to the Einstein field equations for general relativity. Gravitomagnetism is a widely used term referring specifically to the kinetic effects of gravity, in analogy to the magnetic effects of moving electric charge. The most common version of GEM is valid only far from isolated sources, and for slowly moving test particles. The analogy and equations differing only by some small factors were first published in 1893, before general relativity, by Oliver Heaviside as a separate theory expanding Newton's law. This approximate reformulation of gravitation as described by general relativity in the weak field limit makes an apparent field appear in a frame of reference different from that of a freely moving inertial body. This apparent field may be described by two components that act respectively like the electric and magnetic fields of electromagnetism, and by analogy these are called the gravitoelectric and gravitomagnetic fields, since these arise in the same way around a mass that a moving electric charge is the source of electric and magnetic fields. The main consequence of the gravitomagnetic field, or velocity-dependent acceleration, is that a moving object near a massive, non-axisymmetric, rotating object will experience acceleration not predicted by a purely Newtonian (gravitoelectric) gravity field. More subtle predictions, such as induced rotation of a falling object and precession of a spinning object are among the last basic predictions of general relativity to be directly tested. Indirect validations of gravitomagnetic effects have been derived from analyses of relativistic jets. Roger Penrose had proposed a mechanism that relies on frame-dragging-related effects for extracting energy and momentum from rotating black holes.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood