Concept

Processus de Penrose

Résumé
Dans le domaine de la physique des trous noirs, le processus de Penrose est le nom donné à un processus physique qui permet d'extraire de l'énergie depuis l'ergorégion d'un trou noir en rotation (trou noir de Kerr ou trou noir de Kerr-Newman). Il est nommé en l'honneur du mathématicien britannique Roger Penrose qui l'a proposé en 1969, pour ce qui est devenu l'un de ses travaux les plus célèbres. Selon les lois de la mécanique classique et de la relativité générale, un trou noir est une région de l'espace d'où rien ne peut sortir. Il peut de ce fait apparaître surprenant que l'on puisse extraire de l'énergie d'un trou noir. Cela est cependant rendu possible lorsqu'une partie de l'énergie du trou noir est sous forme d'énergie cinétique de rotation. Dans ce cas, en envoyant une particule dans le sens opposé à la rotation du trou noir, on va avoir tendance à diminuer son énergie cinétique de rotation. Cela ne suffit cependant pas pour récupérer cette énergie. Le principe imaginé par Penrose est le suivant : on lance suivant une trajectoire déterminée un objet vers un trou noir en rotation ; une fois arrivé dans une région bien particulière, appelée ergosphère et située au voisinage immédiat mais à l'extérieur du trou noir, on brise l'objet en deux en lui conférant une trajectoire bien déterminée ; l'un de ces objets est absorbé par le trou noir suivant une trajectoire qui diminue l'énergie cinétique de rotation du trou noir ; l'autre objet échappe à son champ gravitationnel et en ressort avec une vitesse supérieure à celle de la particule incidente, à tel point que l'énergie totale de ce fragment est en réalité supérieure à l'énergie de masse de l'objet initial. L'extraction d'énergie par le processus de Penrose a tendance à diminuer l'énergie cinétique de rotation du trou noir. D'après la célèbre formule E=mc, une diminution de l'énergie cinétique provoque une diminution de la masse du trou noir. L'extraction d'énergie n'est possible que si le trou noir est en rotation, c'est-à-dire qu'il possède une ergosphère.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.