The Pelton wheel or Pelton Turbine is an impulse-type water turbine invented by American inventor Lester Allan Pelton in the 1870s. The Pelton wheel extracts energy from the impulse of moving water, as opposed to water's dead weight like the traditional overshot water wheel. Many earlier variations of impulse turbines existed, but they were less efficient than Pelton's design. Water leaving those wheels typically still had high speed, carrying away much of the dynamic energy brought to the wheels. Pelton's paddle geometry was designed so that when the rim ran at half the speed of the water jet, the water left the wheel with very little speed; thus his design extracted almost all of the water's impulse energywhich made for a very efficient turbine. Lester Allan Pelton was born in Vermillion, Ohio in 1829. In 1850, he traveled overland to take part in the California Gold Rush. Pelton worked by selling fish he caught in the Sacramento River. In 1860, he moved to Camptonville, a center of placer mining activity. At this time many mining operations were powered by steam engines which consumed vast amounts of wood as their fuel. Some water wheels were used in the larger rivers, but they were ineffective in the smaller streams that were found near the mines. Pelton worked on a design for a water wheel that would work with the relatively small flow found in these streams. By the mid 1870s, Pelton had developed a wooden prototype of his new wheel. In 1876, he approached the Miners Foundry in Nevada City, California to build the first commercial models in iron. The first Pelton Wheel was installed at the Mayflower Mine in Nevada City in 1878. The efficiency advantages of Pelton's invention were quickly recognized and his product was soon in high demand. He patented his invention on 26 October 1880. By the mid-1880s, the Miners Foundry could not meet the demand, and in 1888, Pelton sold the rights to his name and the patents to his invention to the Pelton Water Wheel Company in San Francisco.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (4)
EE-456: Hydropower plants: generating and pumping units
Master Lecture on the different layouts of hydropower plants. Detailing the specification of generating units (with Pelton, Francis, Kaplan and Bulb turbines), and pumped-storage hydropower plants (re
ME-342: Introduction to turbomachinery
L'étudiant se familiarise avec les domaines de turbomachines thermiques et hydrauliques et les différents types de machines dans ce domaine. Il étudie les outils de base de conception et d'évaluation.
ME-453: Hydraulic turbomachines
Master lecture on Hydraulic Turbomachines: impulse and reaction turbines,pumps and pump-turbines.
Show more
Related lectures (10)
Hydropower: Physics, Turbines, and Integration
Explores the physics of hydropower, turbine types, system integration, and future potential.
Hydropower Generation
Explores hydropower generation principles, turbine types, energy extraction methods, and optimization.
Hydraulic Transients of Turbines: Hydroacoustic Modeling
Explores hydraulic turbine modeling, stability, and historical development, emphasizing the selection criteria for Francis turbines.
Show more
Related publications (56)
Related concepts (5)
Hydroelectricity
Hydroelectricity, or hydroelectric power, is electricity generated from hydropower (water power). Hydropower supplies one sixth of the world's electricity, almost 4500 TWh in 2020, which is more than all other renewable sources combined and also more than nuclear power. Hydropower can provide large amounts of low-carbon electricity on demand, making it a key element for creating secure and clean electricity supply systems.
Turbine
A turbine ('tɜːrbaɪn or 'tɜːrbɪn) (from the Greek τύρβη, tyrbē, or Latin turbo, meaning vortex) is a rotary mechanical device that extracts energy from a fluid flow and converts it into useful work. The work produced can be used for generating electrical power when combined with a generator. A turbine is a turbomachine with at least one moving part called a rotor assembly, which is a shaft or drum with blades attached. Moving fluid acts on the blades so that they move and impart rotational energy to the rotor.
Water turbine
A water turbine is a rotary machine that converts kinetic energy and potential energy of water into mechanical work. Water turbines were developed in the 19th century and were widely used for industrial power prior to electrical grids. Now, they are mostly used for electric power generation. Water turbines are mostly found in dams to generate electric power from water potential energy. Water wheels have been used for hundreds of years for industrial power. Their main shortcoming is size, which limits the flow rate and head that can be harnessed.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.