A water turbine is a rotary machine that converts kinetic energy and potential energy of water into mechanical work.
Water turbines were developed in the 19th century and were widely used for industrial power prior to electrical grids. Now, they are mostly used for electric power generation.
Water turbines are mostly found in dams to generate electric power from water potential energy.
Water wheels have been used for hundreds of years for industrial power. Their main shortcoming is size, which limits the flow rate and head that can be harnessed. The migration from water wheels to modern turbines took about one hundred years. Development occurred during the Industrial Revolution, using scientific principles and methods. They also made extensive use of new materials and manufacturing methods developed at the time.
The word turbine was introduced by the French engineer Claude Burdin in the early 19th century and is derived from the Greek word "τύρβη" for "whirling" or a "vortex". The main difference between early water turbines and water wheels is a swirl component of the water which passes energy to a spinning rotor. This additional component of motion allowed the turbine to be smaller than a water wheel of the same power. They could process more water by spinning faster and could harness much greater heads. (Later, impulse turbines were developed which didn't use swirl.)
The earliest known water turbines date to the Roman Empire. Two helix-turbine mill sites of almost identical design were found at Chemtou and Testour, modern-day Tunisia, dating to the late 3rd or early 4th century AD. The horizontal water wheel with angled blades was installed at the bottom of a water-filled, circular shaft. The water from the mill-race entered the pit tangentially, creating a swirling water column which made the fully submerged wheel act like a true turbine.
Fausto Veranzio in his book Machinae Novae (1595) described a vertical axis mill with a rotor similar to that of a Francis turbine.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Master Lecture on the general layout of a hydropower plant. Detailing the specification of Pelton, Francis, Kaplan and Bulb turbines, Storage pumps and Reversible pump-turbines.
Introduction aux phénomènes propagatifs dans les circuits hydrauliques, calculs de coups de béliers, comportement transitoire d'aménagements hydroélectriques, simulation numériques 1D du comportement
Hydroelectricity, or hydroelectric power, is electricity generated from hydropower (water power). Hydropower supplies one sixth of the world's electricity, almost 4500 TWh in 2020, which is more than all other renewable sources combined and also more than nuclear power. Hydropower can provide large amounts of low-carbon electricity on demand, making it a key element for creating secure and clean electricity supply systems.
The Pelton wheel or Pelton Turbine is an impulse-type water turbine invented by American inventor Lester Allan Pelton in the 1870s. The Pelton wheel extracts energy from the impulse of moving water, as opposed to water's dead weight like the traditional overshot water wheel. Many earlier variations of impulse turbines existed, but they were less efficient than Pelton's design. Water leaving those wheels typically still had high speed, carrying away much of the dynamic energy brought to the wheels.
A water wheel is a machine for converting the energy of flowing or falling water into useful forms of power, often in a watermill. A water wheel consists of a wheel (usually constructed from wood or metal), with a number of blades or buckets arranged on the outside rim forming the driving car. Water wheels were still in commercial use well into the 20th century but they are no longer in common use. Uses included milling flour in gristmills, grinding wood into pulp for papermaking, hammering wrought iron, machining, ore crushing and pounding fibre for use in the manufacture of cloth.
This PhD thesis is framed within the XFLEX HYDRO project, funded by the European Union's Horizon 2020 research and innovation program under grant agreement No 857832. The ultimate objective of the XFLEX HYDRO project is to increase hydropower potential in ...
The number of transient operations in hydraulic machinery connected to power grid, notably start-ups and shut-downs, has observed a substantial increase in recent decades, primarily driven by the global shift toward intermittent renewable energy sources. S ...
2024
, ,
Wind tunnel experiments were performed with a miniature floating wind turbine model to study the effects of cyclic pitch motion on its power performance. The cyclic pitch motion was prescribed by two key parameters: pitch frequency and amplitude. The power ...