Summary
Go is a statically typed, compiled high-level programming language designed at Google by Robert Griesemer, Rob Pike, and Ken Thompson. It is syntactically similar to C, but also has memory safety, garbage collection, structural typing, and CSP-style concurrency. It is often referred to as Golang because of its former domain name, golang.org, but its proper name is Go. There are two major implementations: Google's self-hosting "gc" compiler toolchain, targeting multiple operating systems and WebAssembly. gofrontend, a frontend to other compilers, with the libgo library. With GCC the combination is gccgo; with LLVM the combination is gollvm. A third-party source-to-source compiler, GopherJS, compiles Go to JavaScript for front-end web development. Go was designed at Google in 2007 to improve programming productivity in an era of multicore, networked machines and large codebases. The designers wanted to address criticism of other languages in use at Google, but keep their useful characteristics: Static typing and run-time efficiency (like C) Readability and usability (like Python) High-performance networking and multiprocessing Its designers were primarily motivated by their shared dislike of C++. Go was publicly announced in November 2009, and version 1.0 was released in March 2012. Go is widely used in production at Google and in many other organizations and open-source projects. The Gopher mascot was introduced in 2009 for the open source launch of the language. The design, by Renée French, borrowed from a c. 2000 WFMU promotion. In November 2016, the Go and Go Mono fonts were released by type designers Charles Bigelow and Kris Holmes specifically for use by the Go project. Go is a humanist sans-serif resembling Lucida Grande, and Go Mono is monospaced. Both fonts adhere to the WGL4 character set and were designed to be legible with a large x-height and distinct letterforms. Both Go and Go Mono adhere to the DIN 1450 standard by having a slashed zero, lowercase l with a tail, and an uppercase I with serifs.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (27)
CS-308: Introduction to quantum computation
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
CS-119(c): Information, Computation, Communication
L'objectif de ce cours est d'introduire les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'Informatique et de développer une première compétence en programmation (
CS-320: Computer language processing
We teach the fundamental aspects of analyzing and interpreting computer languages, including the techniques to build compilers. You will build a working compiler from an elegant functional language in
Show more
Related lectures (47)
Shor Algorithm: Circuit Details
Covers the details of the Shor algorithm circuit and its complexity.
Advanced C Data Types
Covers advanced data types and memory management in C programming, emphasizing type consistency and dynamic array allocation.
Go Programming Language: Origin Story & Error Handling
Explores the origin story of the Go programming language and emphasizes effective error handling and concurrency concepts.
Show more
Related publications (82)

Degrees of Separation: A Flexible Type System for Safe Concurrency

Martin Odersky, Yichen Xu, Aleksander Slawomir Boruch-Gruszecki

Data races have long been a notorious problem in concurrent programming. They are subtle to detect, and lead to non-deterministic behaviours. There has been a lot of interest in type systems that statically guarantee data race freedom. Significant progress ...
2024

ACTOR: Action-Guided Kernel Fuzzing

Mathias Josef Payer

Fuzzing reliably and efficiently finds bugs in software, including operating system kernels. In general, higher code coverage leads to the discovery of more bugs. This is why most existing kernel fuzzers adopt strategies to generate a series of inputs that ...
Berkeley2023

The splay-list: a distribution-adaptive concurrent skip-list

Amirkeivan Mohtashami, Dan Alistarh

The design and implementation of efficient concurrent data structures has seen significant attention. However, most of this work has focused on concurrent data structures providing good worst-case guarantees, although, in real workloads, objects are often ...
SPRINGER2023
Show more
Related concepts (74)
Boolean data type
In computer science, the Boolean (sometimes shortened to Bool) is a data type that has one of two possible values (usually denoted true and false) which is intended to represent the two truth values of logic and Boolean algebra. It is named after George Boole, who first defined an algebraic system of logic in the mid 19th century. The Boolean data type is primarily associated with conditional statements, which allow different actions by changing control flow depending on whether a programmer-specified Boolean condition evaluates to true or false.
GitHub
GitHub, Inc. (ˈgɪthʌb) is a platform and cloud-based service for software development and version control using Git, allowing developers to store and manage their code. It provides the distributed version control of Git plus access control, bug tracking, software feature requests, task management, continuous integration, and wikis for every project. Headquartered in California, it has been a subsidiary of Microsoft since 2018. It is commonly used to host open source software development projects.
Assertion (software development)
In computer programming, specifically when using the imperative programming paradigm, an assertion is a predicate (a Boolean-valued function over the state space, usually expressed as a logical proposition using the variables of a program) connected to a point in the program, that always should evaluate to true at that point in code execution. Assertions can help a programmer read the code, help a compiler compile it, or help the program detect its own defects.
Show more