Edge-preserving smoothing or edge-preserving filtering is an technique that smooths away noise or textures while retaining sharp edges. Examples are the median, bilateral, guided, anisotropic diffusion, and Kuwahara filters. In many applications, e.g., medical or satellite imaging, the edges are key features and thus must be preserved sharp and undistorted in smoothing/denoising. Edge-preserving filters are designed to automatically limit the smoothing at “edges” in images measured, e.g., by high gradient magnitudes. For example, the motivation for anisotropic diffusion (also called nonuniform or variable conductance diffusion) is that a Gaussian smoothed image is a single time slice of the solution to the heat equation, that has the original image as its initial conditions. Anisotropic diffusion includes a variable conductance term that is determined using the differential structure of the image, such that the heat does not propagate over the edges of the image. The edge-preserving filters can conveniently be formulated in a general context of graph-based signal processing, where the graph adjacency matrix is first determined using the differential structure of the image, then the graph Laplacian is formulated (analogous to the anisotropic diffusion operator), and finally the approximate low-pass filter is constructed to amplify the eigenvectors of the graph Laplacian corresponding to its smallest eigenvalues. Since the edges only implicitly appear in constructing the edge-preserving filters, a typical filter uses some parameters, that can be tuned, to balance between aggressive averaging and edge preservation. A common default choice for the parameters of the filter is aimed for natural images and results in strong denoising at the cost of some smoothing of the edges. Requirements of the strict edge preservation commonly limit the smoothing power of the filter, such that a single application of the filter still results in unacceptably large noise away from the edges.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (5)
COM-500: Statistical signal and data processing through applications
Building up on the basic concepts of sampling, filtering and Fourier transforms, we address stochastic modeling, spectral analysis, estimation and prediction, classification, and adaptive filtering, w
EE-726: Sparse stochastic processes
We cover the theory and applications of sparse stochastic processes (SSP). SSP are solutions of differential equations driven by non-Gaussian innovations. They admit a parsimonious representation in a
MSE-352: Introduction to microscopy + Laboratory work
Ce cours d'introduction à la microscopie a pour but de donner un apperçu des différentes techniques d'analyse de la microstructure et de la composition des matériaux, en particulier celles liées aux m
Afficher plus
Séances de cours associées (32)
Traitement statistique du signal
Couvre les modèles de mélange gaussien, le denoising, la classification des données et le tri à laide de lanalyse en composantes principales.
Traitement d'image: Lissage et filtrage
Couvre les techniques de lissage d'image, de réduction du bruit et de segmentation à l'aide de filtres et de transformations.
Denoising d'image et tutoriel optimal de flux de puissance
Couvre le débruitage d'image et le flux de puissance optimal dans les systèmes électriques.
Afficher plus
Publications associées (66)

The Sparsity of Cycle Spinning for Wavelet-Based Solutions of Linear Inverse Problems

Michaël Unser, Rahul Parhi

The usual explanation of the efficacy of wavelet-based methods hinges on the sparsity of many real-world objects in the wavelet domain. Yet, standard wavelet-shrinkage techniques for sparse reconstruction are not competitive in practice, one reason being t ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2023

On combining denoising with learning-based image decoding

Touradj Ebrahimi, Michela Testolina

Noise is an intrinsic part of any sensor and is present, in various degrees, in any content that has been captured in real life environments. In imaging applications, several pre- and post-processing solutions have been proposed to cope with noise in captu ...
SPIE2022

Image Denoising with Control over Deep Network Hallucination

Sabine Süsstrunk, Majed El Helou, Qiyuan Liang

Deep image denoisers achieve state-of-the-art results but with a hidden cost. As witnessed in recent literature, these deep networks are capable of overfitting their training distributions, causing inaccurate hallucinations to be added to the output and ge ...
Society for Imaging Science and Technology (IS&T)2022
Afficher plus
Concepts associés (5)
Total variation denoising
In signal processing, particularly , total variation denoising, also known as total variation regularization or total variation filtering, is a noise removal process (filter). It is based on the principle that signals with excessive and possibly spurious detail have high total variation, that is, the integral of the absolute is high. According to this principle, reducing the total variation of the signal—subject to it being a close match to the original signal—removes unwanted detail whilst preserving important details such as .
Filtre médian
Le filtre médian est un filtre numérique non linéaire, souvent utilisé pour la réduction de bruit. La réduction de bruit est une étape de prétraitement classique visant à améliorer les résultats de traitements futurs (détection de bords par exemple). La technique de filtre médian est largement utilisée en numériques car il permet sous certaines conditions de réduire le bruit tout en conservant les contours de l'image. L'idée principale du filtre médian est de remplacer chaque entrée par la valeur médiane de son voisinage.
Anisotropic diffusion
In and computer vision, anisotropic diffusion, also called Perona–Malik diffusion, is a technique aiming at reducing without removing significant parts of the image content, typically edges, lines or other details that are important for the interpretation of the image. Anisotropic diffusion resembles the process that creates a scale space, where an image generates a parameterized family of successively more and more blurred images based on a diffusion process.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.