Multiferroics are defined as materials that exhibit more than one of the primary ferroic properties in the same phase:
ferromagnetism – a magnetisation that is switchable by an applied magnetic field
ferroelectricity – an electric polarisation that is switchable by an applied electric field
ferroelasticity – a deformation that is switchable by an applied stress
While ferroelectric ferroelastics and ferromagnetic ferroelastics are formally multiferroics, these days the term is usually used to describe the magnetoelectric multiferroics that are simultaneously ferromagnetic and ferroelectric. Sometimes the definition is expanded to include nonprimary order parameters, such as antiferromagnetism or ferrimagnetism. In addition, other types of primary order, such as ferroic arrangements of magnetoelectric multipoles of which ferrotoroidicity is an example, have also been recently proposed.
Besides scientific interest in their physical properties, multiferroics have potential for applications as actuators, switches, magnetic field sensors and new types of electronic memory devices.
A Web of Science search for the term multiferroic yields the year 2000 paper "Why are there so few magnetic ferroelectrics?" from N. A. Spaldin (then Hill) as the earliest result. This work explained the origin of the contraindication between magnetism and ferroelectricity and proposed practical routes to circumvent it, and is widely credited with starting the modern explosion of interest in multiferroic materials. The availability of practical routes to creating multiferroic materials from 2000 stimulated intense activity. Particularly key early works were the discovery of large ferroelectric polarization in epitaxially grown thin films of magnetic BiFeO3, the observation that the non-collinear magnetic ordering in orthorhombic TbMnO3 and TbMn2O5 causes ferroelectricity, and the identification of unusual improper ferroelectricity that is compatible with the coexistence of magnetism in hexagonal manganite YMnO3.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ferromagnetism is a property of certain materials (such as iron) that results in a significant, observable magnetic permeability, and in many cases, a significant magnetic coercivity, allowing the material to form a permanent magnet. Ferromagnetic materials are familiar metals that are noticeably attracted to a magnet, a consequence of their substantial magnetic permeability. Magnetic permeability describes the induced magnetization of a material due to the presence of an external magnetic field.
Explores multiferroics, their various ferro orders, and the magnetoelectric effect.
Explores the properties of ferroelectric materials and the challenges in creating materials with both ferroelectric and ferromagnetic properties.
Covers the measurement of electric dipole density in vacuum and materials, the properties of insulating materials, dielectric constants, and the detection of aircraft by radar.
Conductive domain walls in ferroelectrics offer a promising concept of nanoelectronic circuits with 2D domain-wall channels playing roles of memristors or synoptic interconnections. However, domain wall conduction remains challenging to control and pA-rang ...
NATURE PORTFOLIO2022
, , ,
We investigate the mechanics of bistable, hard-magnetic, elastic beams, combining experiments, finite-element modelling (FEM) and a reduced-order theory. The beam is made of a hard magneto-rheological elastomer, comprising two segments with antiparallel ma ...
Spin waves (SWs) are collective excitations of the spin ensemble in systems with magnetic order. In quantum mechanics, a SW is known as a magnon, which is the quasiparticle describing the quantized nature of these wave-like excitations. Magnonics is the re ...