Summary
In theoretical computer science and formal language theory, a regular language (also called a rational language) is a formal language that can be defined by a regular expression, in the strict sense in theoretical computer science (as opposed to many modern regular expression engines, which are augmented with features that allow the recognition of non-regular languages). Alternatively, a regular language can be defined as a language recognized by a finite automaton. The equivalence of regular expressions and finite automata is known as Kleene's theorem (after American mathematician Stephen Cole Kleene). In the Chomsky hierarchy, regular languages are the languages generated by Type-3 grammars. The collection of regular languages over an alphabet Σ is defined recursively as follows: The empty language Ø is a regular language. For each a ∈ Σ (a belongs to Σ), the singleton language {a } is a regular language. If A is a regular language, A* (Kleene star) is a regular language. Due to this, the empty string language {ε} is also regular. If A and B are regular languages, then A ∪ B (union) and A • B (concatenation) are regular languages. No other languages over Σ are regular. See regular expression for syntax and semantics of regular expressions. All finite languages are regular; in particular the empty string language {ε} = Ø* is regular. Other typical examples include the language consisting of all strings over the alphabet {a, b} which contain an even number of a's, or the language consisting of all strings of the form: several a's followed by several b's. A simple example of a language that is not regular is the set of strings {anbn | n ≥ 0}. Intuitively, it cannot be recognized with a finite automaton, since a finite automaton has finite memory and it cannot remember the exact number of a's. Techniques to prove this fact rigorously are given below.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.