**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Deterministic finite automaton

Summary

In the theory of computation, a branch of theoretical computer science, a deterministic finite automaton (DFA)—also known as deterministic finite acceptor (DFA), deterministic finite-state machine (DFSM), or deterministic finite-state automaton (DFSA)—is a finite-state machine that accepts or rejects a given string of symbols, by running through a state sequence uniquely determined by the string. Deterministic refers to the uniqueness of the computation run. In search of the simplest models to capture finite-state machines, Warren McCulloch and Walter Pitts were among the first researchers to introduce a concept similar to finite automata in 1943.
The figure illustrates a deterministic finite automaton using a state diagram. In this example automaton, there are three states: S0, S1, and S2 (denoted graphically by circles). The automaton takes a finite sequence of 0s and 1s as input. For each state, there is a transition arrow leading out to a next state for both 0 and 1. Upon readin

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related publications (26)

Loading

Loading

Loading

Related people (3)

Related units (2)

Related courses (16)

EE-110: Logic systems (for MT)

Ce cours couvre les fondements des systèmes numériques. Sur la base d'algèbre Booléenne et de circuitscombinatoires et séquentiels incluant les machines d'états finis, les methodes d'analyse et de synthèse de systèmelogiques sont étudiées et appliquée

CS-550: Formal verification

We introduce formal verification as an approach for developing highly reliable systems. Formal verification finds proofs that computer systems work under all relevant scenarios. We will learn how to use formal verification tools and explain the theory and the practice behind them.

COM-516: Markov chains and algorithmic applications

The study of random walks finds many applications in computer science and communications. The goal of the course is to get familiar with the theory of random walks, and to get an overview of some applications of this theory to problems of interest in communications, computer and network science.

Related concepts (19)

Finite-state machine

A finite-state machine (FSM) or finite-state automaton (FSA, plural: automata), finite automaton, or simply a state machine, is a mathematical model of computation. It is an abstract machine that ca

Automata theory

Automata theory is the study of abstract machines and automata, as well as the computational problems that can be solved using them. It is a theory in theoretical computer science. The word automata

Regular language

In theoretical computer science and formal language theory, a regular language (also called a rational language) is a formal language that can be defin

Aurore Amaudruz, Christina Fragouli

A long-standing open question in information theory is to characterize the unicast capacity of a wireless relay network. The difficulty arises due to the complex signal interactions induced in the network, since the wireless channel inherently broadcasts the signals and there is interference among transmissions. Recently, Avestimehr, Diggavi and Tse proposed a linear binary deterministic model that takes into account the shared nature of wireless channels, focusing on the signal interactions rather than the background noise. They generalized the min-cut max-flow theorem for graphs to networks of deterministic channels and proved that the capacity can be achieved using information theoretical tools. They showed that the value of the minimum cut is in this case the minimum rank of all the binary adjacency matrices describing source-destination cuts. However, since there exists an exponential number of cuts, identifying the capacity through exhaustive search becomes infeasible. In this work, we develop a polynomial time algorithm that discovers the relay encoding strategy to achieve the min-cut value in binary linear deterministic (wireless) networks, for the case of a unicast connection. Our algorithm crucially uses a notion of linear independence between edges to calculate the capacity in polynomial time. Moreover, we can achieve the capacity by using very simple one-bit processing at the intermediate nodes, thereby constructively yielding finite length strategies that achieve the unicast capacity of the linear deterministic (wireless) relay network.

2009Graph filters play a key role in processing the graph spectra of signals supported on the vertices of a graph. However, despite their widespread use, graph filters have been analyzed only in the deterministic setting, ignoring the impact of stochasticity in both the graph topology and the signal itself. To bridge this gap, we examine the statistical behavior of the two key filter types, finite impulse response and autoregressive moving average graph filters, when operating on random time-varying graph signals (or random graph processes) over random time-varying graphs. Our analysis shows that 1) in expectation, the filters behave as the same deterministic filters operating on a deterministic graph, being the expected graph, having as input signal a deterministic signal, being the expected signal, and 2) there are meaningful upper bounds for the variance of the filter output. We conclude this paper by proposing two novel ways of exploiting randomness to improve (joint graph-time) noise cancellation, as well as to reduce the computational complexity of graph filtering. As demonstrated by numerical results, these methods outperform the disjoint average and denoise algorithm and yield a (up to) four times complexity reduction, with a very little difference from the optimal solution.

The main goal in network information theory is to identify fundamental limits of communication over networks, and design solutions which perform close to such limits. After several decades of effort, many important problems still do not have a characterization of achievable performance in terms of a finite dimensional description. Given this discouraging state of affairs, a natural question to ask is whether there are systematic approaches to make progress on these open questions. Recently, there has been significant progress on several open questions by seeking a (provably) approximate characterization for these open questions. The main goal of approximation in network information theory is to obtain a universal approximation gap between the achievable and the optimal performance. This approach consists of four ingredients: simplify the model, obtain optimal solution for the simplified model, translate this optimal scheme and outer bounds back to the original model, and finally bound the gap between what can be achieved using the obtained technique and the outer bound. Using such an approach, recent progress has been made in several problems such as the Gaussian interference channel, Gaussian relay networks, etc. In this thesis, we demonstrate that this approach is not only successful in problems of transmission over noisy networks, but gives the first approximation for a network data compression problem. We use this methodology to (approximately) resolve problems that have been open for several decades. Not only do we give theoretical characterization, but we also develop new coding schemes that are required to satisfy this approximate optimality property. These ideas could give insights into efficient design of future network communication systems. This thesis is split into two main parts. The first part deals with the approximation in lossy network data compression. Here, a lossy data compression problem is approximated by a lossless counterpart problem, where all the bits in the binary expansion of the source above the required distortion have to be losslessly delivered to the destination. In particular, we study the multiple description (MD) problem, based on the multi-level diversity (MLD) coding problem. The symmetric version of the MLD problem is well-studied, and we can directly use it to approximate the symmetric MD problem. We formulate the asymmetric multi-level diversity problem, and solve it for three-description case. The optimal solution for this problem, which will be later used to approximate the asymmetric multiple description problem, is based on jointly compressing of independent sources. In both symmetric and asymmetric cases, we derive inner and outer bounds for the achievable rate region, which together with the gap analysis, provide an approximate solution for the problem. In particular, we resolve the symmetric Gaussian MD problem, which has been open for three decades, to within 1 bit. In the second part, we initiate a study of a Gaussian relay-interference network, in which relay (helper) nodes are to facilitate competing information flows over a wireless network. We focus on a two-stage relay-interference network where there are weak cross-links, causing the networks to behave like a chain of Z Gaussian channels. For these Gaussian ZZ and ZS networks, we establish an approximate characterization of the rate region. The outer bounds to the capacity region are established using genie-aided techniques that yield bounds sharper than the traditional cut-set outer bounds. For the inner bound of the ZZ network, we propose a new interference management scheme, termed interference neutralization, which is implemented using structured lattice codes. This technique allows for over-the-air interference removal, without the transmitters having complete access to the interfering signals. We use insights gained from an exact characterization of the corresponding linear deterministic version of the problem, in order to study the Gaussian network. We resolve the Gaussian relay-interference network to within 2 bits. The new interference management technique (interference neutralization) shows the use of structured lattice codes in the problem. We also consider communication from a source to a destination over a wireless network with the help of a set of authenticated relays, and presence of an adversarial jammer who wishes to disturb communication. We focus on a special diamond network, and show that use of interference suppression (nulling) is crucial to approach the capacity of the network. The exact capacity characterization for the deterministic network, along with an approximate characterization (to within 4 bits) for the Gaussian network is provided. The common theme that binds the diverse network communication problems in this thesis is that of approximate characterization, when exact resolutions are difficult. The approach of focusing on the deterministic/lossless problems underlying the noisy/lossy network communication problems has allowed us to develop new techniques to study these questions. These new techniques might be of independent interest in other network information theory problems.

Related lectures (35)