In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commonly observed phenomenon, but other waves such as sound waves and water waves also experience refraction. How much a wave is refracted is determined by the change in wave speed and the initial direction of wave propagation relative to the direction of change in speed.
For light, refraction follows Snell's law, which states that, for a given pair of media, the ratio of the sines of the angle of incidence and angle of refraction is equal to the ratio of phase velocities in the two media, or equivalently, to the refractive indices of the two media:
Optical prisms and lenses use refraction to redirect light, as does the human eye. The refractive index of materials varies with the wavelength of light, and thus the angle of the refraction also varies correspondingly. This is called dispersion and causes prisms and rainbows to divide white light into its constituent spectral colors.
Refraction of light can be seen in many places in our everyday life. It makes objects under a water surface appear closer than they really are. It is what optical lenses are based on, allowing for instruments such as glasses, cameras, binoculars, microscopes, and the human eye. Refraction is also responsible for some natural optical phenomena including rainbows and mirages.
A correct explanation of refraction involves two separate parts, both a result of the wave nature of light.
Light slows as it travels through a medium other than vacuum (such as air, glass or water). This is not because of scattering or absorption. Rather it is because, as an electromagnetic oscillation, light itself causes other electrically charged particles such as electrons, to oscillate. The oscillating electrons emit their own electromagnetic waves which interact with the original light. The resulting "combined" wave has wave packets that pass an observer at a slower rate.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Introduction to 0ptical imaging systems such as camera objectives and microscopes. Discussion of imaging formation. Principles of design of imaging optics with geometrical optics and analysis with ray
This laboratory work allows students to deepen their understanding of optical instruments, optoelectronic devices and diagnostic methods. Students will be introduced in state of the art optical instru
This laboratory work allows students to deepen their understanding of optical instruments, optoelectronic devices and diagnostic methods. Students will be introduced in state of the art optical instru
Be captivated by the exotic objects that populate the Radio Sky and gain a solid understanding of their physics and the fundamental techniques we use to observe them.
In physics, mathematics, engineering, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. Waves can be periodic, in which case those quantities oscillate repeatedly about an equilibrium (resting) value at some frequency. When the entire waveform moves in one direction, it is said to be a traveling wave; by contrast, a pair of superimposed periodic waves traveling in opposite directions makes a standing wave.
The Huygens–Fresnel principle (named after Dutch physicist Christiaan Huygens and French physicist Augustin-Jean Fresnel) states that every point on a wavefront is itself the source of spherical wavelets, and the secondary wavelets emanating from different points mutually interfere. The sum of these spherical wavelets forms a new wavefront. As such, the Huygens-Fresnel principle is a method of analysis applied to problems of luminous wave propagation both in the far-field limit and in near-field diffraction as well as reflection.
In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, troughs, or zero crossings. Wavelength is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. The inverse of the wavelength is called the spatial frequency.
Explores refraction in layered systems to determine apparent vs. actual depth.
Explores refraction in different media using a basin with water and oil layers.
Explores refraction in a glass sphere scenario, explaining the discrepancy in perceived and actual distances of objects due to refractive indices.
With the advance of on-chip nanophotonics, there is a high demand for high-refractive-index and low-loss materials. Currently, this technology is dominated by silicon, but van der Waals (vdW) materials with a high refractive index can offer a very advanced ...
We propose NEMTO, the first end-to-end neural render- ing pipeline to model 3D transparent objects with complex geometry and unknown indices of refraction. Commonly used appearance modeling such as the Disney BSDF model cannot accurately address this chall ...
IEEE/CVF International Conference on Computer Vision (ICCV)2023
Ultrashort laser pulses, i.e., pulses emitted shorter than a picosecond, can tailor material properties by introducing permanent modifications locally in three dimensions. Remarkably, under a certain exposure condition, these modifications are accompanied ...