Résumé
En physique des ondes, la réfraction désigne la courbe d'une onde (notamment optique, acoustique ou sismologique) à l'interface entre deux milieux aux vitesses de phase différentes sur le plan chimique ou physique (densité, impédance, température...) La réfraction se traduit par une modification de l'orientation : du front d'onde : c'est la ligne que décrit une vague dans l'eau (optique physique et sismologie) ; du rayon : c'est la direction de propagation de l'onde, perpendiculaire au front d'onde (optique géométrique). Les deux changements d'orientation sont équivalents dans le cas de la réfraction, cependant on préférera le premier pour expliquer le phénomène, et le second pour le quantifier. La lumière est déviée lorsqu'elle passe d'un milieu transparent à un autre (par exemple : de l'air à l'eau, ou le contraire...). C'est ce phénomène qu'on observe lorsque l'on regarde une paille dans un verre : celle-ci paraît brisée. Cette « fracture » apparente est à l'origine du mot « réfraction ». La lumière est dite « réfractée » et la propriété qui caractérise les différents milieux transparents est la « réfringence ». On distingue la réfraction diffuse de la réfraction parfaite : si l'on considère un mince faisceau de lumière, un rayon, alors : dans le cas de la réfraction diffuse, le rayon incident se sépare en une multitude de rayons dans le second milieu de propagation ; dans le cas de la réfraction parfaite, on n'a qu'un seul rayon dans le second milieu. La réfraction diffuse est le cas général dans la nature. En effet, pour qu'il y ait réfraction parfaite, il faut que le dioptre (la surface de séparation entre les milieux) soit parfaitement lisse et que le second milieu soit parfaitement transparent, et en particulier amorphe ou monocristallin. Dans la nature, cela ne se rencontre en général que pour une eau sans ride sans particule en suspension (non turbide). On sait par contre fabriquer des systèmes artificiels ayant une réfraction parfaite, en particulier des systèmes air-verre ou air-plastiques.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (31)
MICRO-421: Imaging optics
Introduction to 0ptical imaging systems such as camera objectives and microscopes. Discussion of imaging formation. Principles of design of imaging optics with geometrical optics and analysis with ray
MICRO-423: Optics laboratories (spring)
This laboratory work allows students to deepen their understanding of optical instruments, optoelectronic devices and diagnostic methods. Students will be introduced in state of the art optical instru
MICRO-424: Optics laboratories (autumn)
This laboratory work allows students to deepen their understanding of optical instruments, optoelectronic devices and diagnostic methods. Students will be introduced in state of the art optical instru
Afficher plus