Le principe de Huygens-Fresnel est une théorie ondulatoire (Fresnel disait vibratoire) de la lumière exposée par Augustin Fresnel dans son Mémoire sur la diffraction de la lumière soumis à l'Académie des Sciences de Paris en 1818. Dans ce mémoire, Fresnel a exploité les concepts exposés en 1690 par Christian Huygens dans son Traité de la lumière (chaque point du front d'onde est source d'ondelettes sphériques secondaires) et les a complétés avec le principe des interférences pour expliquer les phénomènes de propagation, diffraction et d'interférences lumineuses. Le terme même de Principe d'Huygens-Fresnel a été introduit vers 1870 par Gustav Kirchoff et Robert Bunsen. Huygens se décide en 1690 à publier son Traité de la lumière, écrit à Paris en 1678, avant son départ pour les Pays-Bas. Il adopte la théorie ondulatoire de la lumière proposée par Ignace-Gaston Pardies en France en opposition à la théorie d'Isaac Newton pour qui la lumière était formée de particules projetées par les corps incandescents. Pour Huygens, la lumière se propage dans un milieu subtil qu'il nomme éther, milieu composé de particules rigides élastiques qui imprègne l'espace vide aussi bien que rempli d'air, de liquide ou de matière solide. La lumière a une vitesse très élevée mais finie. Ses démonstrations reposent sur la comparaison des temps de propagation avant et après que le faisceau lumineux ait frappé la surface de la matière réfléchissante ou transparente. Comment la lumière se forme-t-elle, comment se propage-t-elle ? 200px|thumb|Fig.1-Propagation des ondes lumineuses selon Christian Huygens L'ensemble des ondelettes issues de chaque point d'un front d'onde BG forme donc un nouveau front d'onde CE. Fresnel écrit, dans son manuscrit de 1818, que les mouvements communiqués aux molécules d'éther , c'est-à-dire dans le sens de la propagation, comme c'est le cas pour les ondes sonores. Cependant, en 1819, au moment de l'impression du mémoire, il ajoute en note : Les ondes lumineuses sont en effet transversales, perpendiculaires à la direction de propagation.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (10)
EE-345: Radiation and antennas
Les antennes sont utilisées dans une multitude d'applications de communications et de détection, demandant des fréquences et propriétés d'antennes très différentes. Ce cours décrit la théorie de base
PHYS-317: Optics I
L'optique est un vieux domaine qui touche à beaucoup de sujets modernes, des techniques expérimentales aux applications courantes. Ce premier cours traite plusieurs aspects de base de l'optique: propa
MICRO-605: Optical MEMS and micro-optics
Micro-optics and optical MEMS encompass a wide range of methods, devices and systems that enable precise, high-speed manipulation of light at the wavelength scale. MICRO605 provides a comprehensive i
Afficher plus
Séances de cours associées (36)
Propriétés radiatives des surfaces
Explore les relations entre les propriétés radiatives de surface, les prédictions de la théorie des ondes électromagnétiques et les facteurs de vue des surfaces diffuses.
Superposition et interférence dans les ondes électromagnétiques
Explore la superposition et l'interférence des ondes électromagnétiques, en discutant de la redistribution de l'énergie et des ondes debout.
Intégrales de Fresnel : Intégrales curvilignes en R2
Explore les intégrales de Fresnel à travers les intégrales curvilignes dans R2, en se concentrant sur les fonctions cos(x2-y) et sin(x).
Afficher plus
Publications associées (58)

A machine learning architecture for including wave breaking in envelope-type wave models

Debbie Eeltink, Yuxuan Liu

Wave breaking is a complex physical process about which open questions remain. For some applications, it is critical to include breaking effects in phase-resolved envelope-based wave models such as the non-linear Schr & ouml;dinger. A promising approach is ...
Pergamon-Elsevier Science Ltd2024

Parameter-free rendering of single-molecule localization microscopy data for parameter-free resolution estimation

Aleksandra Radenovic, Adrien Charles-François Raymond Descloux, Kristin Stefanie Grussmayer

Localization microscopy is a super-resolution imaging technique that relies on the spatial and temporal separation of blinking fluorescent emitters. These blinking events can be individually localized with a precision significantly smaller than the classic ...
2021

Theoretical Studies of Nanowire Ion-Sensitive Field Effect Transistor

Jean-Michel Sallese, Ashkhen Yesayan

The operation principle of a semiconductor nanowire (NW) ion-sensitive field-effect transistor (ISFET), denoted for pH sensing, is studied within the framework of this work. The physical processes in the system are mathematically modelled and presented in ...
PLEIADES PUBLISHING INC2021
Afficher plus
Concepts associés (13)
Réflexion (physique)
vignette|upright=1|La loi de la réflexion en physique.|alt=Le rayon incident arrive sur la surface et est réfléchi. Les angles d'incidence et de réflexion sont identiques. vignette|Matsimäe Pühajärv, Estonie. La réflexion en physique est le brusque changement de direction d'une onde à l'interface de deux milieux. Après réflexion, l'onde reste dans son milieu de propagation initial. De multiples types d'ondes peuvent subir une réflexion.
Lumière
vignette|Rayons de lumière sortant des nuages. Dans son sens le plus habituel, la lumière est le phénomène à l'origine d'une sensation visuelle. La physique montre qu'il s'agit d'ondes électromagnétiques. Le spectre visible est la zone du spectre électromagnétique à laquelle est sensible l'espèce humaine ; il inclut la longueur d'onde où l'éclairement énergétique solaire est maximal à la surface de la Terre, par un effet d'adaptation à l'environnement. Il s'étend autour d'une longueur d'onde de , plus ou moins un tiers.
Réfraction
En physique des ondes, la réfraction désigne la courbe d'une onde (notamment optique, acoustique ou sismologique) à l'interface entre deux milieux aux vitesses de phase différentes sur le plan chimique ou physique (densité, impédance, température...) La réfraction se traduit par une modification de l'orientation : du front d'onde : c'est la ligne que décrit une vague dans l'eau (optique physique et sismologie) ; du rayon : c'est la direction de propagation de l'onde, perpendiculaire au front d'onde (optique géométrique).
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.