In 3D computer graphics, radiosity is an application of the finite element method to solving the rendering equation for scenes with surfaces that reflect light diffusely. Unlike rendering methods that use Monte Carlo algorithms (such as path tracing), which handle all types of light paths, typical radiosity only account for paths (represented by the code "LD*E") which leave a light source and are reflected diffusely some number of times (possibly zero) before hitting the eye. Radiosity is a global illumination algorithm in the sense that the illumination arriving on a surface comes not just directly from the light sources, but also from other surfaces reflecting light. Radiosity is viewpoint independent, which increases the calculations involved, but makes them useful for all viewpoints. Radiosity methods were first developed in about 1950 in the engineering field of heat transfer. They were later refined specifically for the problem of rendering computer graphics in 1984 by researchers at Cornell University and Hiroshima University. Notable commercial radiosity engines are Enlighten by Geomerics (used for games including Battlefield 3 and Need for Speed: The Run); 3ds Max; form•Z; LightWave 3D and the . The inclusion of radiosity calculations in the rendering process often lends an added element of realism to the finished scene, because of the way it mimics real-world phenomena. Consider a simple room scene. The image on the left was rendered with a typical direct illumination renderer. There are three types of lighting in this scene which have been specifically chosen and placed by the artist in an attempt to create realistic lighting: spot lighting with shadows (placed outside the window to create the light shining on the floor), ambient lighting (without which any part of the room not lit directly by a light source would be totally dark), and omnidirectional lighting without shadows (to reduce the flatness of the ambient lighting). The image on the right was rendered using a radiosity algorithm.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
CS-444: Virtual reality
The goal of VR is to embed the users in a potentially complex virtual environment while ensuring that they are able to react as if this environment were real. The course provides a human perception-ac
ME-465: Advanced heat transfer
The course will deepen the fundamentals of heat transfer. Particular focus will be put on radiative and convective heat transfer, and computational approaches to solve complex, coupled heat transfer p
MSE-209: Transfer phenomena in materials science
Ce cours porte sur le transfert de la chaleur par conduction, convection et rayonnement, ainsi que sur la diffusion à l'état solide. D'après les règles phénoménologiques (Equations de Fourrier et Fick
Related lectures (25)
Radiative Properties of Surfaces
Explores relations between surface radiative properties, predictions from electromagnetic wave theory, and view factors for diffuse surfaces.
View Factor Algebra
Covers the evaluation of view factors using reciprocity laws and additive property.
Shadows: Shadow Art and Computation
Explores shadow art creation, shadow computation in computer graphics, shadow mapping techniques, and challenges in achieving realistic shadows.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.